Лосося. Впоследствии нуклеиновые кислоты обнаружили во всех растительных и животных клетках, вирусах, бактериях и грибах.

В природе существует два вида нуклеиновых кислот - дезок-сирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пяти-углеродный сахар дезоксирибозу, а молекула РНК- рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме .

ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах . РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме , матриксе пластид и митохондрий.

Хотя в состав ДНК входит четыре типа нуклеотидов, благодаря различной последовательности их расположения в длинной цепочке достигается огромное разнообразие этих молекул.

Полинуклеотидная цепь ДНК закручена в виде спирали наподобие винтовой лестницы и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между адени-ном и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными.

Рис 1.2 . Фрагмент молекулы ДНК (между А -Т - две водородные связи; между Г-Ц - три водородные связи).

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплемен-тарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Цепи в молекуле ДНК противоположно направлены (антипа-раллелъностъ). Так, если для одной цепи мы выбираем направление от З"-конца к 5"-концу, то вторая цепь с таким направлением будет ориентирована противоположно первой - от 5-конца к З"-концу, иначе говоря, «голова » одной цепи соединяется с «хвостом» другой и наоборот.

Впервые модель молекулы ДНК была предложена в 1953 г. американским ученым Дж. Уотсоном и англичанином Ф. Криком на основе данных Э. Чаргаффа о соотношении пуриновых и пиримидиновых оснований молекул ДНК и результатов рентге-но-структурного анализа, полученных М. Уилкинсом и Р. Франклин. За разработку двухспиральной модели молекулы ДНК Уот-сон, Крик и Уилкинс были удостоены в 1962 г. Нобелевской премии.

ДНК - самые крупные биологические молекулы. Их длина составляет от 0,25 (у некоторых бактерий) до 40 мм (у человека). Это значительно больше самой крупной молекулы белка, которая в развернутом виде достигает длины не более 100-200 нм. Масса молекулы ДНК составляет 6x10 -12 г.

Диаметр молекулы ДНК 2 нм, шаг спирали 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов. Спиральная структура поддерживается многочисленными водородными связями, возникающими между комплементарными азотистыми основаниями, и гидрофобными взаимодействиями. Молекулы ДНК эука-риотических организмов линейны. У прокариот ДНК, напротив, замкнута в кольцо и не имеет ни 3-, ни 5-концов.

При изменении условий ДНК, подобно белкам, может под-. вергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация обо всех белках данного организма, о том, какие белки , в какой последовательности и в каком количестве будут синтезироваться. Последовательность аминокислот в белках записана в ДНК так называемым генетическим (триплетным) кодом.

Основным свойством ДНК является ее способность к репликации.

Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплементарной цепи (поэтому процесс удвоения молекул ДНК относится к реакциям матричного синтеза). В результате получается две молекулы ДНК, у каждой из которых " одна цепь остается от родительской молекулы (половина), а другая - вновь синтезированная. Причем одна новая цепь синтезируются сплошной, а вторая - сначала в виде коротких фрагментов, которые затем сшиваются в длинную цепь специальным ферментом-ДНК-лигазой. В результате репликации две новые молекулы ДНК представляют собой точную копию исходной молекулы.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской клетки к дочерним, что и происходит при делении соматических клеток.

РНК. Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза, вместо тимидилового нуклеотида (Т) - уридило-вый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутри-цепочечном соединении комплементарных нуклеотидов. Цепочки РНК значительно короче ДНК.

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям:

  1. Информационная (матричная) РНК(иРНК). Этот вид наиболее разнороден по размерам и структуре. иРНК представляет собой незамкнутую полинуклеотидную цепь. Она синтезируется в ядре при участии фермента РНК-полимеразы, комплементарна участку ДНК, на котором происходит ее синтез. Несмотря на относительно низкое содержание (3-5% РНК клетки), она выполняет важнейшую функцию в клетке: служит в качестве матрицы для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждь|й белок клетки кодируется специфической иРНК, поэтому число их типов в клетке соответствует числу видов белков.
  2. Рибосомная РНК (рРНК). Это одноцепочечные нуклеиновые кислоты, образующие в комплексе с белками рибосомы - орга-неллы, на которых происходит синтез белка. Рибосомные РНК синтезируются в ядре. Информация об их структуре закодирована в участках ДНК, которые расположены в области вторичной перетяжки хромосом. Рибосомные РНК составляют 80% всей РНК клетки, поскольку в клетке имеется огромное количество рибосом. Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело. В состав рибосом входит три типа рРНК у прокариот и четыре типа рРНК у эукариот . 3. Транспортная (трансферная) РНК(тРНК). Молекула тРНК состоит в среднем из 80 нуклеотидов. Содержание тРНК в клетке - около 15% всей РНК. Функция тРНК - перенос аминокислот к месту синтеза белка. Число различных типов тРНК в клетке невелико (20-60). Все они имеют сходную пространственную организацию. Благодаря внутрицепочечкым водо- родным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листам. Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в иРНК в процессе трансляции) и две боковые.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Более ста лет назад (в 1869 году) Фридрих Мишер, исследуя клетки гноя, выделил из ядер этих клеток новый тип химических соединений, которые он в совокупности назвал "нуклеином". Эти вещества, позднее получившие название нуклеиновых кислот, обладали кислотными свойствами, были необычайно богаты фосфором и содержали также углерод, кислород, водород и азот. Последующее изучение их показало, что существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), которые являются составной частью сложных белков - нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений.

Нуклеопротеины [соответственно, дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП)] отличаются друг от друга по составу, размерам и физико-химическим свойствам. Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП - дезоксирибозой. Название "нуклеопротеины" связано с названием ядра клетки, где они впервые и были обнаружены. Однако в настоящее время установлено, что ДНП и РНП содержатся и в других субклеточных структурах. При этом ДНП преимущественно локализованы в ядре, а РНП - в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП.

Отличия между ДНК и РНК
Показатели ДНК РНК
Местоположение ядро клетки, в составе хроматина, немного в митохондриях (0,2% от всей ДНК) во всех частях
Сахар (пентоза) Дезоксирибоза Рибоза
Азотистые основания Аденин,
Гуанин,
Цитозин,
Тимин
Аденин,
Гуанин,
Цитозин,
Урацил
Количество цепей в молекуле 99,99% - двойная спираль, 0,01% одноцепочечная 99,99% - одноцепочечная, 0,01% двухцепочечная
Форма молекулы Все одноцепочечные - кольцевые.

Большинство двухцепочечных - линейные, часть - кольцевые.

Линейные молекулы

Химический состав нуклеиновых кислот

Выделение нуклеиновых кислот из комплекса их с белками и последующий их полный гидролиз позволил определить химический состав нуклеиновых кислот. Так, при полном гидролизе в гидролизате были обнаружены пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорная кислота.

Азотистые основания (N-основания)

В основе структуры пуриновых и пиримидиновых оснований лежат два ароматических гетероциклических соединения - пурин и пиримидин. Молекула перимидина содержит один гетероцикл. Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.

Обрати внимание! Нумерация атомов в ароматическом кольце азотистых оснований осуществляется арабскими цифрами без штриха [ " ]. Символ [ " ] (произносится как "штрих" или "прим") показывает, что соответствующий номер нумерует атомы пентозного кольца, например 1" (см ниже).

В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин (Ц), урацил (У) и тимин (Т):

и два пуриновых - аденин (А) и гуанин (Г)

Одним из важных свойств азотистых оснований (содержащих оксигруппы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения pH среды. Таутомерные превращения можно представить на примере урацила.

Оказалось, что в составе нуклеиновых кислот все оксипроизводные пуринов и пиримидинов находятся в лактамной форме.

Помимо главных оснований, в составе нуклеиновых кислот открыты редкие (минорные) азотистые основания. Минорные основания встречаются преимущественно в транспортных РНК, где их список приближается к 50, в следовых количествах в рибосомальных РНК и в составе ДНК. В транспортных РНК на долю минорных оснований приходится до 10% всех нуклеотидов, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). К минорным основаниям относятся дополнительно метилированные пуриновые и пиримидиновые основания, например, 2-метиладенин, 1-метилгуанин, 5-метилцитозин, 5-оксиметилцитозин и др.

Углеводы

Углеводы (пентозы) в нуклеиновых кислотах представлены рибозой и 2-дезоксирибозой, которые находятся в β-D-рибофуранозной форме (формулы слева).

В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.

Конформация углеводного цикла (пентозы)

Для углеводного цикла (пентозы) нуклеиновых кислот плоская конформация, когда атомы углерода С1", С2", С3", С4" и гетероатом кислорода находятся в одной плоскости, - энергетически невыгодна. Среди многочисленных теоретически возможных конформаций этих остатков в полинуклеотидах реализуются только две: либо С2"-эндоконформации, либо С3"-эндоконформации. Эти конформации возникают при вращении вокруг связи С4", которое приводит к такому искажению кольца, при котором один из атомов пентозы (пятичленного фуранозного кольца) оказывается вне плоскости создаваемой четырьмя другими атомами. Такая конформация представляет собой эндо- или экзо- структуру, в зависимости от того располагается ли данный атом на той же стороне плоскости, что и С5" или на противоположной стороне.

Вещества, в которых азотистые основания соединены с пентозой, называются нуклеозидами (рис.2).

Нуклеозиды относятся к N-гликозидам. У них пиримидиновые азотистые основания (один гетероцикл) соединяются с пентозой гликозидной связью через N-1, пуриновые через N-9. В зависимости от типа пентозы различают два вида нуклеозидов - дезоксирибонуклеозиды, содержащие 2-дезоксирибозу, и рибонуклеозиды, содержащие рибозу.

Дезоксирибонуклеозиды входят только в ДНК, а рибонуклеозиды - только в РНК. Пиримидиновые и пуриновые нуклеозиды содержат соответствующие азотистые основания:

Кроме главных встречаются минорные нуклеозиды, в которые входят минорные азотистые основания. Больше всего минорных нуклеозидов содержится в тРНК. Наиболее распространенными минорными нуклеозидами, входящими во все тРНК, являются дигидроуридин, псевдоуридин (обозначаемый сокращенно значком Ψ) и риботимидин. В псевдоуридине отсутствует обычная N-гликозидная связь. В нем атом С-1 рибозы соединен с атомом С-5 урацила.

Вследствие стерических причин пуриновые основания в составе пуриновых нуклеотидов в ДНК могут принимать только две стерически доступные конформации относительно остатка дезоксирибозы, обозначаемые как син-конформации и анти-конформации.

В то же время пиримидиновые основания пиримидиновых нуклеотидов присутствуют в ДНК в виде анти-конформеров, что связано со стерическими несоответствиями, возникающими между углеводной частью нуклеотида и карбонильным кислородом в С-2 положении пиримидина. В силу этого пиримидиновые основания приобретают, главным образом, анти-конформацию (Nelson D.L., Cox M.M., Lehninger Principles of Biochemistry, W.H. Freeman (ed.), San Francisco, 2004).

Нуклеотиды представляют собой соединения соответствующего типа нуклеозида с фосфорной кислотой. Они также делятся на рибонуклеотиды, содержащие рибозу, и дезоксирибонуклеотиды, содержащие 2-дезоксирибозу. Название нуклеотида происходит от вида азотистого основания и количества остатков фосфорной кислоты. Если содержится один остаток фосфорной кислоты - нуклеозид монофосфат (к примеру дAMФ - дезоксиаденозин монофосфат), два остатка – нуклеозид дифосфат (к примеру дAДФ - дезоксиаденозин дифосфат), три остатка – нуклеозид трифосфат (к примеру дAТФ - дезоксиаденозин трифосфат). Остатки фосфорной кислоты присоединяются к 5"-углероду дезоксирибозы и обозначены α, β, γ.

Ниже приведено строение адениловых нуклеотидов.

Фосфат может присоединяться в разные положения кольца пентозы (в рибонуклеотидах - в положениях 2", 3", 5", в дезоксирибонуклеотидах - в положения 3", 5"). Имеющиеся в клетке свободные нуклеотиды содержат фосфатную группу в положении 5". Нуклеозид-5"-фосфаты участвуют в биологическом синтезе нуклеиновых кислот и образуются при их распаде. Поскольку нуклеозид-5"-фосфаты, или мононуклеотиды, являются производными соответствующих нуклеозидов, то различают те же главные и редкие рибомононуклеотиды и дезоксирибомононуклеотиды.

Удлинение фосфатного конца мононуклеотида за счет присоединения дополнительных фосфатов приводит к образованию нуклеозидполифосфатов. Чаще всего в клетках встречаются нуклеозиддифосфаты и нуклеозидтрифосфаты. Ниже приводятся названия и сокращенные обозначения нуклеозидфосфатов:

Все нуклеозидфосфаты находятся в клетке в виде анионов, поэтому аденозинфосфаты правильнее обозначать АМФ 2- , АДФ 3- , АТФ 4- . АДФ и АТФ являются макроэргическими, т. е. богатыми энергией, соединениями, химическая энергия которых используется организмом для различных функций. Остальные нуклеозидди- и трифосфаты также участвуют в реакциях синтеза биологических веществ.

Международные стандартные сокращения

В работах по исследованию нуклеиновых кислот употребляются схемы нумерации атомов и сокращений, рекомендованные комиссией Международного союза общей и прикладной химии (IUPAC) и Международным союзом биохимиков (IUB). Подкомиссия IUPAC-IUB выработала единые стандартные определения (IUPAC-IUB, 1983).

Сокращения и символы, используемые для обозначения оснований, нуклеозидов и нуклеотидов (Arnott S., 1970).

Основание
Название Символ Название Символ Название Символ
1. Рибонуклеозиды и рибонуклеотиды
Урацил Ura Уридин Urd или U Уридиловая кислота 5"-UMP или pU
Цитозин Cyt Цитидин Cyd или C Цитидиловая кислота 5"-CMP или pC
Аденин Ade Аденозин Ado или A Адениловая кислота 5"-AMP или pA
Гуанин Gua Гуанозин Guo или G Гуаниловая кислота 5"-GMP или pG
2. Дезоксирибонуклеозиды и дезоксирибонуклеотиды
Тимин Thy Дезокситимидин dThd или dT Дезокситимидиловая кислота 5"-dTMP или pdT
Цитозин Cyt Дезоксицитидин dCyd или dC Дезоксицитидинловая кислота 5"-dCMP или pdC
Аденин Ade Дезоксиаденозин dAdo или dA Дезоксиадениловая кислота 5"dAMP или pdA
Гуанин Gua Дезоксигуанозин dGuo или dG Дезоксигуаниловая кислота 5"dGMP или pdG
3.Полинуклетиды

Синтетические полимеры, состоящие из нуклеотидов одного и того же типа, называют гомополимерами. Обозначение, например, полиадениловая кислота - poly(A)

Синтетические полимеры с чередующейся последовательностью нуклеотидов называются гетерополимерами.

Сополимер с чередованием dA и dT - poly(дезоксиаденилат - дезокситимидилат) обозначается как poly d(A-Т) или poly(dA-dT) или (dA-dT) или d(A-T)n.

Для случайного сополимера dA, dT вместо деффиса между символами ставится запятая, например, poly d(A,T).

Образование комплементарного дуплекса обозначается точкой между символами - poly(dA) · poly(dT); тройной спирали - poly(dA)· 2poly(dT).

Олигонуклеотиды обозначаются следующим образом: например, олигонуклеотид гуанилил-3",5"-цитидилил-3",5"-уридин - GpCpU или GCU, при этом 5"-концевым нуклеотидом является G, а 3"-концевым - U.

Для комплементарно связанных олигонуклеотидов номенклатура следующая:

На рис.5. представлена принятая для нуклеотидов система нумерации атомов. Символы, обозначающие атомы сахара, отличаются от таковых для атомов оснований значком "штрих". Остов полинуклеотида описывают в направлении P -> O5" -> C5" -> C4" -> C3" -> O3" -> P.

В сахарном кольце нумерация такова: C1" -> C2" -> C3" -> C4" -> O4" ->C5".

Двум атомам водорода при атоме C5" и при атоме C2" в дезоксирибозе, а также двум свободным атомам кислорода при атомах фосфора приписываются номера 1 и 2, причем это делается следующим образом: если смотреть вдоль цепи в направлении O5"-> C5", то двигаясь по часовой стрелке, мы будем последовательно проходить атомы C4", H5"1, H5"2. Аналогично, если смотреть вдоль цепи в направлении O3" -> P - O5", то при движении по часовой стрелке мы будем последовательно проходить атомы O5", Op1, Op2.

Общая характеристика нуклеиновых кислот

Нуклеиновыми кислотами или полинуклеотидами называются высокомолекулярные вещества, состоящие из мононуклеотидов, соединенных в цепь 3",5"-фосфодиэфирными связями .

Общее содержание ДНК и РНК в клетках зависит от их функционального состояния. В сперматозоидах количество ДНК достигает 60% (в пересчете на сухую массу клеток), в большинстве клеток 1-10, а в мышцах около 0,2%. Содержание РНК, как правило, в 5-10 раз больше, чем ДНК. Соотношение РНК/ДНК в печени, поджелудочной железе, эмбриональных тканях и вообще в тканях, активно синтезирующих белок, составляет от 4 до 10. В тканях с умеренным синтезом белка соотношение колеблется от 0,3 до 2,5. Особое место занимают вирусы. У них в качестве генетического материала может быть либо ДНК (ДНК-овые вирусы), либо РНК (РНК-овые вирусы).

В клетках бактерий, не имеющих ядра (прокариоты), молекула ДНК (хромосома) находится в специальной зоне цитоплазмы - нуклеоиде. Если она связана с клеточной мембраной бактерии, то ее называют мезосомой. Фрагмент ДНК меньших размеров локализуется вне этой хромосомной зоны. Такие участки ДНК в бактериях называются плазмидами или эписомами. В клетках, имеющих ядро (эукариоты), ДНК распределена между ядром, где она входит в состав хромосом и ядрышка, и внеядерными органоидами (митохондриями и хлоропластами). Имеются наблюдения, что в очень малых количествах ДНК присутствует в микросомах.

Примерно 1-3% ДНК клетки приходится на внеядерную ДНК, а остальное сосредоточено в ядре. Значит, наследственные свойства характерны не только для ядра, но и для митохондрий и хлоропластов клеток. Необычно высоким содержанием внеядерной ДНК отличаются зрелые яйцеклетки, у которых она присутствует в многочисленных митохондриях и желточных пластинках, причем в последних является не генетическим материалом, а резервом нуклеотидов.

РНК в отличие от ДНК распределена по клетке более равномерно. Уже одно это обстоятельство говорит о том, что функция РНК более динамична и многообразна. В клетках высших организмов около 11% всей РНК находится в ядре, около 15% - в митохондриях, 50% - в рибосомах и 24% - в гиалоплазме.

Молекулярная масса ДНК зависит от степени сложности живого объекта: у бактерий она составляет 2 10 9 , у человека и животных достигает 10 11 . У бактерий ДНК находится в виде единичной гигантской молекулы, слабо связанной с белками. В других объектах ДНК окружена белками или простейшими аминами. У вирусов это простейшие основные белки или полиамины (путресцин и спермидин), которые нейтрализуют отрицательный заряд молекулы ДНК, связываясь с ее фосфатными группами. В сперматозоидах некоторых животных и рыб ДНК образует комплексы с протаминами и гистоноподобными белками. В хромосомах клеток человека и других высших организмов ДНК связана с гистонами и негистоновыми белками. Такие комплексы белка с ДНК называют дезоксирибонуклеопротеидами (ДНП).

РНК имеет значительно меньшую молекулярную массу, чем ДНК. В зависимости от выполняемой функции, молекулярной массы и состава нуклеотидов выделяют следующие главные типы РНК: информационная, или матричная (мРНК), транспортная (тРНК) и рибосомальная (рРНК). Разные рРНК различаются по молекулярной массе (табл. 13). Кроме трех главных типов есть минорные, или редкие, РНК, содержание которых в клетке незначительно, и функции их только изучаются.

Большинство типов РНК связано в клетке с различными белками. Такие комплексы называются рибонуклеопротеидами (РНП). Характеристика нуклеиновых кислот суммирована в табл. 1.

Таблица 1. Краткая характеристика нуклеиновых кислот клеток высших организмов
Тип нуклеиновой кислоты Молекулярная масса Константа седиментации (в единицах Сведберга-S) Содержание в клетке, % Локализация в клетке Функция
ДНК 10 11 - 97-99% от всей ДНК

1-3% от всей ДНК

Ядро

Митохондрии

Хранение генетической информации и участие в передаче ее родительской ДНК при делении клетки или в передаче РНК в процессе жизнедеятельности
мРНК 4 10 4 - 1,2 10 6 6-25 25% от всей РНК Ядро, цитоплазма Является копией участка ДНК, содержащего информацию о структуре полипептидной цепи белка. Переносит информацию от ДНК к месту синтеза белка - к рибосомам
тРНК 2,5 10 4 ~4 15% от всей РНК Гиалоплазма, рибосомы, митохондрии Участвует в активировании аминокислот, их транспорте к рибосомам и сборке из аминокислот полипептидов на рибосомах
рРНК 0,7 10 6 18 80% от всей РНК Рибосомы цитоплазмы Образует скелет рибосом цитоплазмы (или митохондрий), который окутывается белками рибосом. Играет вспомогательную роль при сборке белка на рибосомах
0,6 10 6 16 Рибосомы митохондрий
~4 10 4 5 Все рибосомы
Хромосомная векторная РНК 10 4 3 Следы Хромосомы ядер Узнавание и активирование генов ДНК
Низкомолекулярные ядерные РНК 2,5 10 4 -5 10 4 4-8 Доли процента Ядра, РНП частицы цитоплазмы Активирование генов ДНК, формирование скелета белковых частиц, переносящих тРНК из ядра в цитоплазму

Физико-химические свойства нуклеиновых кислот

Физико-химические свойства нуклеиновых кислот определяются высокой молекулярной массой и уровнем структурной организации. Для нуклеиновых кислот характерны: коллоидные и осмотические свойства, высокая вязкость и плотность растворов, оптические свойства, способность к денатурации.

Коллоидные свойства типичны для всех высокомолекулярных соединений. При растворении нуклеиновые кислоты набухают и образуют вязкие растворы типа коллоидов. Гидрофильность их зависит в основном от фосфатов. В растворе молекулы нуклеиновых кислот имеют вид полианиона с резко выраженными кислотными свойствами. При физиологических значениях pH все нуклеиновые кислоты являются полианионами и окружены противоионами из белков и неорганических катионов. Растворимость двуспиральных нуклеиновых кислот хуже, чем односпиральных.

Денатурация и ренатурация. Денатурация - свойство, присущее тем макромолекулам, которые имеют пространственную организацию. Денатурация вызывается нагреванием, воздействием химических веществ, которые разрывают водородные и ван-дер-ваальсовы связи, стабилизирующие вторичную и третичную структуру нуклеиновых кислот. Например, нагревание ДНК приводит к разделению двойной спирали на одиночные цепи, т. е. наблюдается переход "спираль - клубок". При медленном охлаждении цепи вновь воссоединяются по принципу комплементарности. Образуется нативная двойная спираль ДНК. Это явление называется ренатурацией. При быстром охлаждении ренатурация не происходит.

Характерно изменение оптической активности нуклеиновых кислот, сопровождающее их денатурацию и ренатурацию. Спиральные (организованные) участки нуклеиновых кислот вращают плоскость поляризованного света, т. е. оптически активны, а разрушение спиральных участков сводит на нет оптическую активность нуклеиновых кислот.

Все нуклеиновые кислоты имеют максимум оптической плотности при длине волны около 260 нм, что соответствует максимуму поглощения азотистых оснований. Однако интенсивность поглощения природной нуклеиновой кислоты значительно ниже, чем смеси ее же нуклеотидов, полученных, например, при гидролизе этой нуклеиновой кислоты, или одиночных цепей. Причиной является структурная организация ДНК и РНК, которая вызывает классический эффект - снижение оптической плотности. Это явление получило название гипохромного эффекта. Он максимально выражен у нуклеиновых кислот, имеющих спиральные структуры (например, у ДНК) и содержащих много ГЦ-пар (ГЦ-пары имеют три водородные связи, и поэтому их труднее разорвать).

Молекулярная гибридизация нуклеиновых кислот. На способности нуклеиновых кислот ренатурировать после денатурации основан чрезвычайно важный метод определения степени гомологичности, или родственности, нуклеиновых кислот. Его называют молекулярной гибридизацией. В его основе лежит комплементарное спаривание одноцепочечных участков нуклеиновых кислот.

Этот метод позволил обнаружить особенности первичной структуры ДНК. Оказывается, в ДНК животных имеются многократно (до 100 000 раз) повторяющиеся участки с одинаковой последовательностью нуклеотидов. Они составляют до 10-20% всей ДНК. Их гибридизация идет очень быстро. Остальная часть ДНК представлена уникальными последовательностями, которые не дублируются. Эти участки ДНК гибридизуются очень медленно. Вероятность их совпадения у разных организмов невелика. С помощью метода молекулярной гибридизации можно установить гомологичность ДНК организма одного вида ДНК другого вида или гомологичность РНК участкам ДНК.

Нуклеиновые кислоты и систематика организмов

Нуклеиновые кислоты являются материальным носителем наследственной информации и определяют видоспецифичность организма, сложившуюся в ходе эволюции. Изучение особенностей нуклеотидного состава ДНК разных организмов позволило перейти от систематики по внешним признакам к систематике генетической. Это направление в молекулярной биологии получило название геносистематики. Основателем его был выдающийся советский биохимик А. Н. Белозерский.

Сравнение нуклеотидного состава ДНК разных организмов привело к интересным выводам. Оказалось, что коэффициент специфичности ДНК, т. е. отношение Г + Ц к А + Т, сильно варьирует у микроорганизмов и довольно постоянен у высших растений и животных. У микроорганизмов наблюдаются колебания изменчивости от крайнего ГЦ-типа до выраженного АТ-типа. ДНК высших организмов стойко сохраняет АТ-тип. Может создаться впечатление, что у высших организмов теряется специфичность ДНК. На самом деле у них она так же специфична, как и у бактерий, но ее специфичность определяется не столько изменчивостью состава нуклеотидов, сколько последовательностью чередования их вдоль цепи. Интересные выводы на основании нуклеотидного состава ДНК были сделаны А. Н. Белозерским и его учениками относительно происхождения многоклеточных животных и высших растений. Их ДНК АТ-типа ближе всего к ДНК грибов, поэтому свою родословную животные и грибы, очевидно, ведут от общего предка - крайне примитивных грибообразных организмов.

Еще большую информацию о родстве организмов дает метод молекулярной гибридизации. С помощью этого метода была установлена высокая гомологичность ДНК человека и обезьяны. Причем по составу ДНК человека всего на 2-3% отличается от ДНК шимпанзе, чуть больше - от ДНК гориллы, более чем на 10% - от ДНК остальных обезьян, а от ДНК бактерии - почти на 100%. Особенности первичной структуры ДНК тоже можно использовать в систематике. Гомология по участкам повторяющихся последовательностей (быстрая гибридизация) используется для макросистематики, а для уникальных фрагментов ДНК (медленная гибридизация) - для микросистематики (на уровне видов и родов). Ученые считают, что постепенно по ДНК можно будет построить все родословное древо живого мира.

>> Нуклеиновые кислоты

1. Какова роль ядра в клетке?
2. С какими органоидами клетки связана передача наследственных признаков?
3. Какие вещества называются кислотами?

(от лат. nucleus - ядро) впервые были обнаружены в ядрах лейкоцитов. Впоследствии было выяснено, что нуклеиновые кислоты содержатся во всех клетках, причем не только в ядре, но также в цитоплазме и различных органоидах.

Различают два типа нуклеиновых кислот - дезоксирибонуклеиновые (сокращенно ДНК) и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит углевод дезоксирибозу, а молекула РНК - рибозу.

Нуклеиновые кислоты - биополимеры, состоящие из мсномеров-нуклеотидов. Мономеры-нуклеотиды ДНК и РНК имеют сходное строение.

Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Это азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты (рис. 9).

Азотистых оснований четыре: аденин, гуанин, цитозин или тимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 10).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.
Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом обнаруживается важная закономерность: против аденина одной цени всегда располагается тимин другой цепи, против гуанина - цитозин, и наоборот. Это объясняется тем, что пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными, или комплементарными (от лат, соmplementum - дополнение), друг другу. Между аденином и тимином всегда возникают две, а между гуанином и цитозином - три водородные связи (рис. 11).

Транспортные РНК (т-РНК) - самые небольшие по размеру - транспортируют аминокислоты к месту синтеза белка.

Информационные, или матричные, РНК (и-РНК) синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется.
Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.

Нуклеиновая кислота. Дезоксирибонуклеиновая кислота, или ДНК. Рибонуклеиновая кислота, или РНК, Азотистые основания: аденин, гуанин, цитозин, тимин, урацил. Комплементарностъ. Транспортная РНК (т-РНК). Рибосомная РНК (р РНК). Информационная РНК (и-РНК). Нуклеотид. Двойная спираль.

1. Какое строение имеет нуклеотид?
2. Какое строение имеет молекула ДНК?
3. В чем заключается принцип комплементар- ности?
4. Что общего и какие различия в строении молекул ДНК и РНК?
5. Какие типы молекул РНК вам известны? Каковы их функции?

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Что нам известно о нуклеиновых кислотах?

Нуклеиновые кислоты были открыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. nucleos — ядро ).
В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле.

Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота).

Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также углевод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц.

Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации о всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой 1000 и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениловых нуклеотидов в любой молекуле ДНК равно числу тимидиловых нуклеотидов (А-Т), а число цитидиловых нуклеотидов равно числу гуаниловых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.
ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в

Вопрос 1. Что такое нуклеиновые кислоты?
Нуклеиновые кислоты получили свое название в связи с тем, что впервые были обнаружены в клеточном ядре (лат. nyс1еus - ядро). Позже оказалось, что они присутствуют также в цитоплазме, пластидах и митохондриях. По химическому составу нуклеиновые кислоты - гетерополимеры, состоящие из нуклеотидов, соединенных между собой особым типом химической связи (фосфодиэфирная связь). Каждый нуклеотид, в свою очередь, состоит из трех частей: моносахарида-пентозы и связанных с ним азотистого основания и фосфорной кислоты.

Вопрос 2. Какие типы нуклеиновых кислот вы знаете?
Выделяют два типа нуклеиновых кислот - рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Оба этих типа содержатся во всех живых клетках. Исключение составляют вирусы, обладающие либо только ДНК, либо только РНК.

Вопрос 3. Чем различается строение молекул ДНК и РНК?
Существует два типа нуклеиновых кислот: ДНК и РНК. ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяющиеся путем образования ковалентных связей мсжлу дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цени и одну молекулу при помощи водородных связей, возникающихих между азотистыми основаниями, входящими и состав нуклеотидов.
Рибонуклеиновая кислота (РНК), так же как ДНК, представляет собой полимер, в состав которого входят (аденин, гуанин, цитозин); нуклеотид - урацил - присутствует в молекуле РНК "место тимина. Нуклеотиды РНК содержат вместо дезоксирибозы другую пентозу - рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.
Нуклеиновые кислоты отличаются по общей структуре: ДНК представляет собой комплементарную двуцепочечную молекулу (аденин всегда стоит напротив тимина, гуанин - напротив цитозина), РНК - одноцепочечную. Содержание ДНК в клетках относительно постоянно; содержание РНК может варьировать в зависимости От интенсивности синтеза белка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.

Вопрос 4. Назовите функции ДНК
Выделяют три основные функции ДНК.
Хранение наследственной информации. Порядок нуклеотидов определяет первичную структуру белков. Первичная структура, В свою очередь, обуславливает свойства белков, а следовательно, особенности строения и функционирования клеток. Таким образом, ДНК закодирована информация обо всех свойствах клеток, тканей и органов. Участок молекулы ДНК, кодирующий первичную структуру одной белковой цепи, называют геном.
Передача наследственной информации следующему поколению клеток. Эта функция осуществляется благодаря способности ДНК к удвоению (редупликации). После деления в каждую дочернюю клетку попадает одна из двух идентичных молекул ДНК, являющихся точной копией материнской ДНК.
Передача наследственной информации из ядра в цитоплазму. Почти вся ДНК находится в ядре; синтез же белка происходит в цитоплазме клетки. Соответственно, необходим посредник, передающий описание первичной структуры белка от ДНК к рибосоме. В роли такого посредника выступает информационная РНК, которая синтезируется на одной из цепей ДНК, копируя по принципу комплементарности последовательность нуклеотидов определенного гена.

Вопрос 5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.
Рибонуклеиновые кислоты бывают нескольких видов. Есть рибосомальная, транспортная и информационная РНК. Нуклеотид РНК состоит из одного из азотистых оснований (аденина, гуанина, цитозина и урацила), углевода - рибозы и остатка фосфорной кислоты. Молекулы РНК - одноцепочковые.
Рибосомальная РНК (р-РНК) в соединении с белком входит в состав рибосом. p-РНК составляет 80% от всей РНК в клетке. На рибосомах идет синтез белка.
Информационная РНК (и-РНК) составляет от 1 до 10% от всей РНК в клетке. По строению и-РНК комплементарна участку молекулы ДНК, несущему информацию о синтезе определенного белка. Длина и-РНК зависит от длины участка ДНК, с которого считывали информацию. и-РНК переносит информацию о синтезе белка из ядра в цитоплазму.
Транспортная РНК (т-РНК) составляет около 10% всей РНК Она имеет короткую цепь нуклеотидов и находится в цитоплазме. Т-РНК присоединяет определенные аминокислоты и подвозит их к месту синтеза белка к рибосомам. Т-РНК имеет форму трилистника. На одном конце находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце имеется триплет нуклеотидов, к которому присоединяется аминокислота (рис. 1).