Практически все химические вещества, окружающие нас, тестируются человеком, исходя из его запросов и потребностей. Каждое соединение имеет уникальный, только ему присущий набор признаков и свойств, из которых отбираются полезные и необходимые нам в повседневной жизни. Альдегиды, о которых пойдет речь, также не являются исключением.

Скромное дитя органической химии

Среди соединений углерода, которые принято называть органическими, есть хорошо известные, которые как говорится, «у всех на слуху». Например, глюкоза, этиловый спирт или пластмассы. Альдегидам в этом смысле не повезло. О них известно разве что узким специалистам, да еще учащимся старших классов, усиленно штудирующим химию для поступления в вуз. На самом же деле такие соединения (как например, уксусный альдегид) химические свойства которого мы рассмотрим, широко используется как в промышленном производстве, так и в быту.

Яблоко раздора

Увы, но открытия в науке довольно часто происходят отнюдь не безоблачно. Альдегиды, их химическое строение и свойства были открыты в результате длительных споров и дискуссий в среде ученых XIX столетия. А такие известные химики как Либих и Дёберейнер даже не на шутку повздорили, выясняя, кому же на самом деле принадлежит пальма первенства в получении и выделении в чистом виде уксусного альдегида. Его добыли из паров этилового спирта, пропущенных над платиновой сеткой, служащей катализатором реакции. Единственное, что смогло примирить оппонентов, так это безоговорочное принятие всеми химиками названия нового класса веществ - альдегиды, что дословно обозначает «безводородные алкоголи». Оно указывает на способ получения их из спиртов реакцией отщепления двух атомов водорода.

Ни с чем не перепутаешь

Рассматривая физические и химические свойства альдегидов, легко убедиться, что они достаточно специфичны. Так, формальдегид, являющийся токсичным газом, имеет резкий удушающий запах. Его 40%-ый водный раствор, называемый формалином, служит причиной особенного запаха в анатомических лабораториях и моргах, где его применяют как антигнилостное средство, консервирующее белки органов и тканей.

А уксусный альдегид, являющийся следующим в гомологическом ряду, представляет собой хорошо растворимую в воде бесцветную жидкость с неприятным запахом прелых яблок. Альдегиды, химические свойства, которых характеризуются реакциями окисления и присоединения, могут превращаться в вещества генетически близких классов: карбоновых кислот или спиртов. Рассмотрим их на конкретных примерах.

Визитная карточка альдегидов

В органической химии, как, впрочем, и в неорганической, существует такое понятие как «качественная реакция». Её можно сравнить с маяком, сигнализирующим о том, что мы имеем дело именно с веществами конкретного класса, например, с альдегидами. Подтверждают химические свойства альдегидов реакции с аммиачным раствором оксида серебра и с гидроксидом меди при нагревании (реакция серебряного зеркала)

Продуктом реакции будет чистое серебро, выделившееся в виде зеркального слоя на стенках пробирки.

В результате реакции выпадает осадок кирпичного цвета - закись меди.

Вещества-двойники

Сейчас подошло время разобраться с таким явлением, характерным для всех органических веществ, в том числе и для альдегидов, как изомерия. Она напрочь отсутствует в мире неорганической химии. Там все просто: одной химической формуле соответствует только одно конкретное соединение с присущими ему физическими и химическими свойствами. Например, формуле HNO 3 соответствует одно вещество, называемое нитратной кислотой, имеющее температуру кипения 86°С, с едким запахом, очень гигроскопичное.

В царстве же органической химии живут-поживают вещества-изомеры, у которых формулы одинаковы, а свойства различны. Например, формулу C 4 H 8 O имеют два совершенно разных альдегида: бутаналь и 2-метилпропаналь.

Формулы их:

Изомерные альдегиды, химические свойства, которых зависят от их состава и строения, служат прекрасным доказательством гениальной теории строения органических соединений, созданной российским ученым М. Бутлеровым. Его открытие имеет такое же фундаментальное значение для химии, как периодический закон Д Менделеева.

Уникальный углерод

Прекрасным доказательством, подтверждающим теорию М. Бутлерова служат химические свойства альдегидов. Органическая химия, благодаря исследованиям российского ученого, наконец смогла ответить на вопрос, изводивший своею сложностью не одно поколение ученых, а именно: как объяснить поражающее воображение многообразие органических соединений, в основе которого лежит явление изомерии. Рассмотрим строение молекул двух альдегидов-изомеров: бутаналя и 2-метилпропаналя, имеющих одну и ту же молекулярную формулу - C 4 H 8 O, но различные структурные, а значит, отличающиеся друг от друга физическими и химическими свойствами.

Обратим внимание на две важнейшие особенности атома углерода, которые введены как постулаты в теорию М. Бутлерова:

1. Углерод в органических соединениях всегда четырёхвалентен.

2. Атомы углерода способны соединяться друг с другом и образовывать различные пространственные конфигурации: неразветвленные и разветвленные цепи или циклы.

На них, согласно валентности, нанизываются атомы других химических элементов: водорода, кислорода, азота, образуя, таким образом, весь гигантский арсенал существующих органических соединений (а их более 10 млн.) К тому же количество постоянно увеличивается за счет новых веществ, получаемых в химии органического синтеза.

Чем полярнее, тем лучше

Продолжая изучать альдегиды, их химическое строение и свойства, остановимся на явлении полярности атомов, входящих в состав молекул альдегидов. Так, атом углерода альдегидной группы в молекуле уксусного альдегида приобретает частичный положительный заряд, а атом кислорода - частичный отрицательный. Причина их возникновения лежит в следующем: электронная плотность π-связи является более подвижной, чем σ-связь.

В общей формуле альдегидов, где R -углеводородный радикал, связанный с альдегидной группой, на атоме кислорода образуется частичный отрицательный заряд, а на атоме углерода - частичный положительный. Таким образом, функциональная группа альдегидов становится сильно поляризованной, что обуславливает большую реакционную способность этих веществ. Проще говоря, чем больше поляризованы атомы в молекуле вещества, тем лучше и быстрее оно вступает в химические реакции. Быстрая окислительная способность атома водорода в альдегидной группе и реакционная активность карбонильной группы обеспечивает альдегидам характерные им реакции присоединения и полимеризации.

Жизнь в пластмассовом мире

Именно альдегиды, химические свойства которых обусловлены способностью к реакциям поликонденсации и полимеризации, стали родоначальниками фенопластов и аминопластов - базовых материалов современной индустрии полимеров. Сырьем для ее предприятий служат формальдегид и уксусный альдегид. Так, из фенолформальдегидных смол получают фенопласты - важнейшие заменители черных и цветных металлов. Формальдегид получают окислением метана при нагревании его до 600°С в смеси с воздухом, а также окислением нагретого до 300°С метанола над медным катализатором. Таким образом, альдегиды, получение и химические свойства, которых мы рассматриваем, являются важным сырьем в реакциях органического синтеза.

Делаем выводы

Как видим, в послужном списке альдегидов достаточно необходимых и важных веществ, таких как, например, формальдегид и уксусные альдегиды, химические свойства которых человек с успехом использует в различных сферах своей жизнедеятельности.

Альдегиды и их химические свойства

Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.

Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.

А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.



При таком присоединении характерны следующие реакции:

Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.

При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.

Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.

Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.



А вот так называемая реакция «светофор»:



Физические свойства альдегидов

Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.

Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.

Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.

Нахождение альдегидов в природе

В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.

Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.

Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.



Применение альдегидов

Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.

Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.

Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.

Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.

В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.

Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегидами и кетонами называют производные углеводородов, содер­жащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соедине­ние с атомом водорода, а другая - с радикалом (предельного ряда в пре­дельных альдегидах и непредельного - в непредельных альдегидах). Об­щая формула альдегидов:

причем R может быть равно Н.

В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:

Изомерия. Номенклатура.

Общая формула предельных альдегидов и кетонов С n Н 2 n O.

Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой

(см. ниже).

Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным угле­водородам с добавлением суффикса -аль (систематическая номенклатура).

муравьиный альдегид (формальдегид), метаналь (рис. 1а )
уксусный альдегид, этаналь (рис. 1б )
пропионовый альдегид, пропаналь
СН 3 -СН 2 -СН 2 -СНО масляный альдегид, бутаналь
изомасляный альдегид, 2-метилпропаналь
СН 3 -СН 2 -СН 2 -СН 2 -СНО валериановый альдегид, пентаналь
изовалернановый альдегид, 3-метилбутаналь
метилэтилуксусный альдегид, 2-метилбутаналь
триметилуксусный альдегид, 2,2-диметлпропаналь


Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наимено­ванию радикалов, связанных с карбонильной группой. По систематичес­кой номенклатуре к названию предельного углеводорода добавляется суф­фикс -он и указывается номер атома углерода, связанного с карбониль­ным кислородом:

Способы получения

Альдегиды и кетоны получают рядом общих методов.

1. Окислением или каталитическим дегидрированием первичных спир­тов получают альдегиды, вторичных - кетоны. Эти реакции уже приво­дились при рассмотрении химических свойств спиртов.

2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:



R - СООН + Н-СООН→R-СНО + СО 2 + Н 2 0

2R-СООН→R -СО -R + C0 2 + Н 2 0

R-СООН + R" - СООН → R - СО-R’+С0 2 + Н 2 0

Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пироли­зом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей ба­риевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.

3. Гидролиз геминальных дигалогенопроизводных приводит к альдеги­дам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов угле­рода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.

4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:

НС≡СН + Н 2 O→ СН 3 -СНО

5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.

RCH 2 OH + (CH 3) 2 SO→ RCH = О + (CH 3) 2 S

6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:

R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О

Имеется несколько модификаций этого метода.

7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кис­лот с литийдиалкилкупратамн и кадмийалкилами:

R 2 CuLi + R"COCI→R - СО - R"+LiCI + R - Сu

8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализато­ров (например, Со + ThO 2 + MgO, нанесенные на кизельгур):

Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе полу­чаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:

2Со + 8СО→ Со 2 (СО) 8

Cо 2 (CO)8 + H 2 → 2НСо(СО) 4

R -СН=СН 2 + НСо(СО) 4 → R - СН 2 -СН 2 - Со(СО) 4

R - СН 2 -СН 2 -Со(СО) 4 +СО→ R-СН 2 -СН 2 -СО - Со(СО) 4

R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 →R-СН 2 -СН 2 -СНО + Со(СО) 8

Физические свойства

Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие аль­дегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут доволь­но приятно.

При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоцииро­ванными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плот­ность альдегидов и кетонов ниже единицы.

В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы на­ходится в очень слабом поле.

Химические свойства

Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбониль­ной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электро­отрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома уг­лерода. Дипольный момент карбонильной груп­пы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответ­ственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризо­ванная часть присоединяющейся молекулы всегда на­правляется к углеродному атому карбонильной груп­пы, в то время как ее положительно поляризованная часть направляется к кислородному атому.

Реакция присоединения нуклеофильных реагентов по месту карбо­нильной связи - ступенчатый процесс. Схематически реакцию присо­единения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:

Радикалы, способные увеличивать положительный заряд на атоме уг­лерода карбонильной группы, сильно повышают реакционную способ­ность альдегидов и кетонов; радикалы или атомы, уменьшающие положи­тельный заряд на этом углеродном атоме, оказывают противоположное действие.

Помимо реакций присоединения по карбонильной группе для альдеги­дов и кетонов характерны также реакции с участием соседних с карбо­нильной группой углеродных радикалов, обусловленные электроноакцеп­торным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.

А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вто­ричные спирты. На этом основан один из методов получения спиртов.

В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:

Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не вос­станавливает двойные углерод-углеродные связи.

При восстановлении альдегидов или кетонов водородом в момент выде­ления (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:

пинакон

Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При вос­становлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.

Реакция протекает с промежу­точным образованием свободных радикалов:

Б. Реакции нуклеофильного присоединения.

1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.

2. Присоединение синильной кислоты приводит к образованию α-оксинитрилов, омылением которых получают α-гидроксикислоты:

нитрил α-гидроксипропионовой кислоты

Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Циани­стый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при обра­зовании циангидрина является ион CN - :

3. Присоединение гидросульфита натрия дает кристаллические веще­ства, обычно называемые гидросульфитными производными альдегидов или кетонов:

При нагревании с раствором соды или минеральных кислот гидросуль­фитные производные разлагаются с выделением свободного альдегида или кетона, например:

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жир­ном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .

4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:

ацетальдимин, этаними н

которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:

альдегидаммиа к

При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:

5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):

ацетальдоксим

ацетоноксим

Эти реакции применяют для количественного определения карбониль­ных соединений.

Механизм реакции (R=H или Alk):

6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):

гидразон

альдазин

кетазин

Гидразоны кетонов и альдегидов при нагревании с твердым КОН выде­ляют азот и дают предельные углеводороды (реакция Кижнера):

В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гид­разином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.

Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.

Образование фенилгидразонов:

Семикарбазоны образуются по схеме:

Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:

Для этих реакций характерен кислотный катализ.

7. Альдегиды и кетоны способны присоединять по карбонильной груп­пе воду с образованием гидратов - геминальных гликолей. Эти соедине­ния во многих случаях существуют только в растворах. Положение равно­весия зависит от строения карбонилсодержащего соединения:

Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кри­сталлические гидраты.

Альдегиды с более высокой молекулярной массой образуют с водой устойчи­вые при низких температурах твердые полугидраты:

8.

В присутствии следов минеральной кислоты образуются ацетали:

Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвер­гаются гидролизу с образованием спиртов и выделением альдегидов:

Ацеталь, полученный из масляного альдегида и поливинилового спир­та, используется в качестве клея при изготовлении безосколочных стекол.

Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кис­лоты:

9. При действии на альдегиды спиртов образуются полуацетали:

Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:

Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:

В. Реакции окисления. Окисление альдегидов идет значительно лег­че, чем кетонов. Кроме того, окисление альдегидов приводит к образова­нию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.

Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:

Аммиачный раствор гидроксида серебра OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности - образуется сереб­ряное зеркало:

Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.

Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной рас­твор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:

Красная окись меди Cu 2 О почти количественно выпадает в осадок. Ре­акция эта с кетонами не идет.

Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат ка­лия, по ионному механизму, причем первой стадией процесса обычно яв­ляется присоединение окислителя по СО-группе.

Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.

По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.

Г. Реакции полимеризации. Эти реакции характерны только для аль­дегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):

Механизм полимеризации может быть представлен в следующем виде:

Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Ре­акции ускоряются как кислотами, так и основаниями.

Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:

Е. Реакции конденсации.

1. Альдегиды в слабоосновной среде (в при­сутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли об­разуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в α-положении к кар­бонилу, как это показано на примере уксусного альдегида:

альдоль

В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбо­нилу, так как только водородные атомы этой группы в достаточной степе­ни активируются карбонильной группой:

3-гидрокси-2-метилпентаналь

Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.

Механизм реакции альдольной конденсации, катализируемой основа­ниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:

Поэтому переход от предельного альдегида к непредельному через аль­доль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.

При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не спо­собные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:

2(СН 3) 3 С-СНО +КОН→(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.

Альдольная конденсация кетонов происходит в более жестких услови­ях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:

В еще более жестких условиях, например при нагревании с концентри­рованной серной кислотой, кетоны подвергаются межмолекулярной де­гидратации с образованием непредельных кетонов:

окись мезитила

Окись мезитила может реагировать с новой молекулой ацетона:

форон

Возможна и конденсация между альдегидами и кетонами, например:

3-пентен-2-он

Во всех этих реакциях вначале идет альдольная конденсация, а затем де­гидратация образовавшегося гидроксикетона.

2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).

уксусноэтиловый эфир

Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:

R-СНО + [(C 6 H 5) 3 P] 3 PhCl→ R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.

При изучении химических превращений альдегидов и кетонов необхо­димо обратить внимание на существенные различия между ними. Альде­гиды легко окисляются без изменения углеродной цепи (реакция серебря­ного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.

Отдельные представители. Применение

Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражаю­ще на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - непол­ным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над сереб­ряным катализатором):

СН 3 ОН→ Н 2 +Н 2 СО.

Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.

1. В щелочной среде он претерпевает реакцию окисления - восста­новления (реакция Канниццаро):

2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впер­вые А. М. Бутлеровым:

6Н 2 С=О + 4NH 3 → 6H 2 0 + (CH 2) 6 N 4

уротропин

Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого ни­трованием уротропина)

гексаген

в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).

3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвер­гается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:

гексоза

В присутствии щелочей формальдегид может конденсироваться и с дру­гими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4

СН 3 СНО + 3Н 2 СО → (НОСН 2) 3 ССНО

(НОСН 2) 3 ССНО + Н 2 СО → (НОСН 2) 4 С + НСОО -

Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .

4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.

5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленно­сти. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.

6. Продуктом конденсации формальдегида с изобутиленом (в присут­ствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагрева­нии до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разла­гается с образованием изопрена.

Формалин широко применяется в качестве дезинфицирующего веще­ства для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.

Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздра­жение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.

Промышленные методы получения ацетальдегида уже были рассмот­рены: гидратация ацетилена, дегидрирование этилового спирта, изомери­зация окиси этилена, каталитическое окисление воздухом предельных углеводородов.

В последнее время ацетальдегид получают окислением этилена кисло­родом воздуха в присутствии катализатора по схеме:

CH 2 =CH 2 +H 2 O +PdCl 2 →CH 3 -СНО + 2HCl + Pd

Pd + 2CuC1 2 → 2CuCl + PdCl 2

2CuCl + 2HCI + 1 / 2 O 2 → 2CuCI 2 + H 2 O

2CH 2 = CH 2 + O 2 →2CH 3 CHO

Другие 1-алкены образуют в этой реакции метилкетоны.

Из ацетальдегида в промышленных масштабах получают уксусную кис­лоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.

Подобно формальдегиду, он конденсируется с фенолом, аминами и дру­гими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.

Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количе­ства последнего возрастают с понижением температуры (до -10 °С):

Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристал­лическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака по­лучают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.

Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлориро­ванием этилового спирта.

Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:

Обладает снотворным действием. Конденсацией хлораля с хлорбензо­лом получают в промышленных масштабах инсектициды.

При действии на хлораль щелочей образуется хлороформ:

Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органиче­ских растворителях.

Ацетон получают:

1) из изопропилового спирта - окислением или дегидрированием;

2) окислением изопропилбензола, получаемого алкилированием бен­зола, наряду с фенолом;

3) ацетон-бутанольным брожением углеводов.

Ацетон в качестве растворителя применяется в больших количе­ствах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при произ­водстве небьющегося органического стекла, кетена и т. д.

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

Предельные; например:



Непредельные; например:

Ароматические; например:



Алициклические; например:


Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений - кетонам


например:




Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются карбонильными соединениями.

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp 2 -гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости. Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства


Химические свойства

Альдегиды - реакционноспособные соединения, вступающие в многочисленные реакции. Наиболее характерны для альдегидов:


а) реакции присоединения по карбонильной группе; реагенты типа НХ присоединяются следующим образом:



б) реакции окисления связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I. Реакции присоединения

1. Гидрирование (образуются первичные спирты



2. Присоединение спиртов (образуются полуацетали и ацетали)



В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:



II. Реакции окисления

1. Реакция «серебряного зеркала»



Упрощённо:



Эта реакция является качественной реакцией на альдегидную группу (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).


2. Реакция с гидроксидом меди (II)



Эта реакция также является качественной реакцией на альдегидную групп у (выпадает красный осадок Сu 2 O).


Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее - до Н 2 СO 3 (СO 2 + Н 2 O):



III. Реакции ди-, три- и полимеризации

1. Альдольная конденсация



2. Тримеризация ацетальдегида



3. Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:



IV. Реакция поликонденсации формальдегида с фенолом

Нахождение в природе

Альдегидная группа содержится во многих природных веществах, таких, как углеводы (альдозы), некоторые витамины (ретиналь, пиридоксаль). Их следы содержатся в эфирных маслах и часто способствуют их приятному запаху, например, коричный альдегид (в кассиевом масле его может быть до 75 %, а в цейлонском коричном масле даже до 90 %) и ванилин.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название - пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизаторотщепление.

Цитраль содержится в лемонграссовом и кориандровом маслах (до 80 %), цитронеллаль - в цитронелловом (приблизительно 30 %) и эвкалиптовом, бензальдегид - в масле горького миндаля. Куминовый альдегид содержится в масле тмина, гелиотропин - в масле гелитропа и сирени, анисовый альдегид и жасминальдегид в небольших количествах содержатся во многих эфирных маслах.отщеплениеотщепление.

Процесс получения ацетальдегида, основанный на гидратации ацетилена, в последнее время потерял былое значение. Последние фабрики в Западной Европе, синтезирующие ацетальдегид по данной схеме, были закрыты в 1980 году. Причиной этому послужила бо́льшая доступность этилена в качестве сырья, а также токсичность катализатора - сульфата ртути.

Ежегодное мировое производство формальдегида (по данным на 1996 год) составило 8,7·106 т, ацетальдегида (на 2003 год) - 1,3·106 т.

Основным методом получения бензальдегида является гидролиз бензальхлорида в кислой или щелочной средах. В качестве гидролизующих агентов могут применяться гидроксид кальция, карбонат кальция, гидрокарбонат натрия, карбонат натрия, а также различные кислоты с добавлением солей металлов. Исходное сырьё, в свою очередь, получают при хлорировании толуола в боковую цепь. Менее распространённый процесс основан на частичном окислении толуола.

Физические свойства альдегидов

Формальдегид представляет собой газообразное при комнатной температуре вещество. Альдегиды до С12 - жидкости, а альдегиды нормального строения с более длинным неразветвлённым углеродным скелетом, являются твёрдыми веществами.

Температуры кипения альдегидов с неразветвлённым строением углеродной цепи выше, чем у их изомеров. Например, валериановый альдегид кипит при 100,4 °C, а изовалериановый - при 92,5 °C. Они кипят при более низких температурах, чем спирты с тем же числом углеродных атомов, например, пропионовый альдегид кипит при 48,8 °C, а пропанол-1 при 97,8 °C. Это показывает, что альдегиды, в отличие от спиртов, не являются сильно ассоциированными жидкостямиотщепление. Данное свойство используется в синтезе альдегидов путём восстановления спиртов: поскольку температура кипения альдегидов в целом ниже, они могут быть легко отделены и очищены от спирта перегонкой. В то же время их температуры кипения намного выше, чем у углеводородов с той же молекулярной массой, что связано сих высокой полярностьюотщепление.

Вязкость, плотность и показатель преломления при 20 °C увеличиваются с увеличением молярной массы альдегидов. Низшие альдегиды являются подвижными жидкостями, а альдегиды от гептаналя до ундеканаля имеют маслообразную консистенцию.

Формальдегид и ацетальдегид практически неограниченно смешиваются с водой, однако, с ростом длины углеродного скелета, растворимость альдегидов в воде сильно уменьшается, например, растворимость гексаналя при 20 °С составляет лишь 0,6 % по массе. Алифатические альдегиды растворимы в спиртах, простых эфирах и других распространённых органических растворителях.

Низшие альдегиды имеют резкий запах, а высшие гомологи от С8 до С13 являются компонентами многих парфюмерных изделий.

Атом углерода в карбонильной группе находится в состоянии sp2-гибридизации. Углы R-C-H, R-C-O и H-C-O составляют приблизительно 120° (где R - алкил).

Двойная связь карбонильной группы сходна по физической природе с двойной связью между углеродными атомами, однако в то же время энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых связей (2×358 кДж/моль) C-O. С другой стороны, кислород является более электроотрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома углерода. Дипольный момент карбонильной группы составляет ~9·10−30 Кл·мотщепление. Длина связи С=О составляет 0,122 нм.

Поляризация двойной связи «углерод-кислород» по принципу мезомерного сопряжения позволяет записать следующие резонансные структуры:

Подобное разделение зарядов подтверждается физическими методами исследования и во многом определяет реакционную способность альдегидов как выраженных электрофилов и позволяет им вступать в многочисленные реакции нуклеофильного присоединения.

Подобным образом протекает и реакция присоединения спиртов по карбонильной группе, имеющая важное значение в органическом синтезе для защиты карбонильной группы. Первичный продукт присоединения называется полуацеталем, далее под действием кислоты он превращается в ацеталь. При стоянии альдегиды также образуют циклические или полимерные ацетали (например, триоксан или параформ для формальдегида и паральдегид для ацетальдегида). При нагревании этих соединений со следовыми количествами кислот происходит деполимеризация и регенерация исходных альдегидов.

Аналогичные превращения происходят также с участием серосодержащих аналогов спиртов - тиолов; они приводят, соответственно, к тиоацеталям, также играющим важную роль в тонком органическом синтезе.

Альдегиды могут присоединять циановодород HCN с образованием циангидринов, применяемых в органическом синтезе для получения α,β-ненасыщенных соединений, α-гидроксикислот, α-аминокислот. Данная реакция также является обратимой и катализируется основаниями. В лабораторных условиях циановодород (т. кип. 26 °C) обычно получают действием эквивалентного количества минеральной кислоты на цианид натрия или калия.

Относительно небольшие пространственные затруднения при присоединении нуклеофилов к альдегидам позволяют превращать их в бисульфитные производные под действием большого избытка гидросульфита натрия NaHSO3. Данные соединения представляют собой кристаллические вещества и часто используются для выделения, очистки или хранения соответствующих альдегидов, поскольку последние могут быть легко из них регенерированы под действием кислоты или основания.

Реакция альдегидов с магний- и литийорганическими соединениями приводит к образованию вторичных спиртов (в случае формальдегида - первичных). Процесс может осложняться побочными реакциями енолизации и восстановления карбонильного соединения, которые приводят к снижению выхода. При использовании литийорганических соединений эти помехи удаётся устранить.

При реакции альдегидов с первичными и вторичными аминами происходит образование иминов и енаминов соответственно. В основе обеих реакций лежит присоединение нуклеофильных реагентов по карбонильной группе с последующим отщеплением воды от полученного тетраэдрического интермедиата. Реакция образования иминов требует кислотного катализа и наиболее эффективно протекает в области pH от 3 до 5. Для получения енаминов с удовлетворительным выходом необходимо применять азеотропную отгонку воды, что позволяет сместить равновесие в сторону образования продукта. Обычно в качестве вторичных аминов используют циклические амины (пирролидин, пиперидин или морфолин).

Аналогичным образом альдегиды реагируют с гидроксиламином, гидразином, 2,4-динитрофенилгидразином, семикарбазидом и другими подобными соединениями. Большинство получаемых при этом соединений являются кристаллическими и могут быть использованы для идентификации альдегидов по температуре плавления и другим характеристикам. Также эти соединения находят применение в органическом синтезе, например, гидразоны могут быть восстановлены по реакции Кижнера - Вольфа.

Присоединение к α,β-ненасыщенным альдегидам может протекать с образованием 1,2- и 1,4-продуктов

Присоединение нуклеофильных реагентов к α,β-ненасыщенным альдегидам может протекать как по карбонильной группе, так и по «четвёртому» положению сопряжённой системы. Причина этого заключается в том, что двойная углерод-углеродная связь поляризуется под действием полярной карбонильной группы (мезомерный эффект), и дальний от карбонильной группы атом углерода двойной связи приобретает частичный положительный заряд. Реакция нуклеофила с данным атомом углерода называется сопряжённым присоединением, или 1,4-присоединением. Присоединение к карбонильной группе по аналогии называют 1,2-присоединением. Формальным результатом 1,4-присоединения является присоединение нуклеофила по углерод-углеродной двойной связи. Во многих случаях 1,2- и 1,4-присоединение являются конкурирующими реакциями, однако иногда удаётся проводить селективные реакции с получением продуктов 1,2- либо 1,4-присоединения.

Присоединение первичных и вторичных аминов к α,β-ненасыщенным альдегидам протекает в мягких условиях и приводит к образованию 1,4-продукта. Напротив, в случае циановодорода наблюдается конкурентное образование обоих продуктов с преобладанием продукта 1,2-присоединения. Чтобы в данной реакции исключить возможность 1,2-присоединения, используют специальный реагент - диэтилалюминийцианид (C2H5)2AlCN.

Литийорганические соединения присоединяются исключительно по карбонильной группе, давая аллиловые спирты. Сопряжённое присоединение проводят под действием медьорганических реагентов - диалкилкупратов, которые позволяют ввести в карбонильное соединение не только первичную, но также вторичную или третичную алкильную, алкенильную или арильную группу. Магнийорганические реагенты (реактивы Гриньяра), полученные из магния сверхвысокой чистоты, также присоединяются с образованием 1,2-продуктов, в то время как обыкновенные реактивы Гриньяра, предположительно из-за примесей других металлов (например, меди и железа) вступают и в 1,2-, и в 1,4-присоединение, что регулируется пространственными факторами. В настоящее время магнийорганические реагенты утратили своё значение в данной области.

Благодаря способности образовывать енолят-ионы альдегиды вступают в ряд химических реакций, где эти частицы выступают как нуклеофилы. В частности, для них характерны реакции конденсации. В слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации, в ходе которой часть молекул альдегида выступает как карбонильная компонента (реагирует карбонильной группой), а часть молекул альдегида под действием основания превращается в енолят-ионы и выступает как метиленовая компонента (вступает в реакцию α-метиленовым звеном). Образующийся альдоль при нагревании отщепляет воду с образованием α,β-непредельного альдегида (переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией или альдольно-кротоновой конденсацией).

При реакции между двумя разными альдегидами образуется смесь четырёх различных альдолей. Исключение составляют случаи, когда разделение реагентов на карбонильную и метиленовую компоненту очевидно (например, один из альдегидов не содержит α-метиленового звена и может выполнять роль только карбонильной компоненты). Разработаны также методы повышения селективности подобных реакций. Перекрёстная конденсация ароматических альдегидов с кетонами, получила название реакции Кляйзена - Шмидта. Известны также схожие реакции альдегидов: реакция Кнёвенагеля, реакция Тищенко, реакция Перкина, бензоиновая конденсация и другиеотщепление.

Ароматические альдегиды также окисляются до карбоновых кислот или сложных эфиров фенолов (реакция Байера - Виллигера) под действием надкислот, причём соотношение продуктов зависит как от заместителей в ароматическом ядре, так и от кислотности среды.

Альдегиды можно восстанавливать до первичных спиртов. Наиболее распространённые методы восстановления включают реакции с комплексными гидридами: боргидридом натрия NaBH4, боргидридом лития LiBH4 и алюмогидридом лития LiAlH4. Боргидрид натрия является более избирательным реагентом и позволяет восстанавливать карбонильную группу альдегидов и кетонов, не затрагивая сложноэфирные, нитрильные, амидные, лактонные и оксирановые группы. Он также не восстанавливает изолированную двойную углерод-углеродную связь. Алюмогидрид лития менее селективен и восстанавливает перечисленные выше функциональные группы, поэтому восстановление альдегидов с его применением возможно только в отсутствие этих групп.

Историческую роль играет реакция Меервейна - Пондорфа - Верлея, в которой в качестве восстановителя используется изопропилат алюминия. В настоящее время этот метод вытеснен более эффективной реакцией восстановления альдегидов и кетонов изопропиловым спиртом в присутствии окиси алюминия.

Алифатические альдегиды обычно не гидрируют на палладиевых катализаторах, но для этих целей можно использовать рутений на угле, никель Ренея или платину.

В аналитической практике используется окисление альдегидов и кетонов йодом в щелочной среде. Йод добавляют в избытке, а затем избыток его оттитровывают тиосульфатом натрия.

Спектральные методы анализа альдегидовов.

ИК-спектроскопические методы анализа альдегидовотщепление

Альдегиды легко идентифицировать по ИК-спектру - он содержит специфические полосы поглощения, относящиеся к валентным колебаниям связи C-H в альдегидной группе: два острых пика, расположенные далеко за пределами области поглощения, характерной для связей C-H обычного типа. Кроме того, в ИК-спектрах альдегидов обычно присутствуют полосы поглощения, обусловленные валентными колебаниями связей С=O и C-H: νС=O=1725-1685 см−1, νС-H=2850; 2750 см−1.

Масс-спектрометрические методы анализа альдегидовотщепление

Масс-спектры альдегидов имеют довольно выраженный молекулярный ион, хотя его содержание может быть довольно низким. Потеря алкильных радикалов приводит к образованию ацил-катионов. Для них особенно характерны α- и β-расщепление и перегруппировка Мак-Лафферти. Для альдегидов с подвижным γ-атомом H и не содержащих заместителя у α-углерода характерен пик m/z=44, а для содержащих заместитель появляется интенсивный пик замещённого иона с m/z=44+12nотщепление.

ЯМР-спектроскопические методы анализа альдегидовотщепление

В 1Н ЯМР-спектре альдегида наиболее характеристичным является сигнал формильного протона, обычно расположенный в наиболее слабом поле в области δ 9,4-10,1 м д. (9,4-9,7 -алифатические, 9,6-10,1 -ароматические)отщепление. Сигнал альдегидной группы в 13C ЯМР-спектре расположен в области 182-215 м д.

УФ-спектроскопические методы анализа альдегидовотщепление

Два максимума поглощения от р до р* (<200 нм) и от n до р* (> 200 нм).

Электронно-спектроскопические методы анализа альдегидовотщепление

Электронные спектры содержат полосы с λмакс 290 нм для RCHO (R=CH3, C2H5, C3H7), 345 нм для акролеина и 327 для кротонового альдегидаотщепление.

Биологическое действие

Токсичны. Способны накапливаться в организме. Кроме общетоксического, обладают раздражающим и нейротоксическим действием. Эффект зависит от молекулярной массы: чем она больше, тем слабее раздражающее, но сильнее наркотическое действие, причём ненасыщенные альдегиды токсичнее насыщенных. Некоторые обладают канцерогенными свойствами.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей, вредно влияют на нервную систему. С увеличением числа атомов углерода в молекуле раздражающее действие ослабевает. Ненасыщенные альдегиды обладают более сильным раздражающим действием, чем насыщенные.

Ацетальдегид СН3СНО вызывает возбуждение, сменяющееся наркозом. Он является промежуточным продуктом метаболизма этилового спирта в организме. Действие тримера этого альдегида - паральдегида (С2Н40)3 - сильнее и продолжительнее, в то время как тетрамер - метальдегид (С2Н40)4 - является более токсичным. Удлинение алкильного радикала в молекуле альдегида приводит к усилению физиологической активности, но вместе с этим возрастает и токсичность.

Введение галогена в молекулу альдегида повышает его наркотическое (снотворное) действие. Так, наркотические свойст­ва хлораля более выражены, чем у ацетальдегида. Альдегидная группа усиливает токсичность вещества, но она может быть значительно снижена путем образования гидратной формы альдегида. Гидратные формы мало токсичны, в такой форме хлораль применяется в медицине под названием хлоралгидрата, проявляющего снотнорное действие. Введение гидроксильных групп в молекулу альдегида или конденсация их с образованием альдолей существенно снижает реакционную способность, а также физиологическую активность соединений. Так, сахара представляют собой фармакологически инертные вещества. Большинство ароматических альдегидов имеет низкую токсичность, так как они легко окисляются до соответствующих кислот, которые обычно довольно инертныотщепление

Из всех альдегидов больше всего производится формальдегида (около 6 млн тонн/год). Он, в основном, используется в производстве смол - бакеллита, галалита (в сочетании с мочевиной, меламином и фенолом), для дубления кож, протравливания зерна. Также из него синтезируют лекарственные средства (уротропин) используют как консервант биологических препаратов (благодаря способности свертывать белок). Он является предшественником метилендифенилдиизоцианата, использующегося в производстве полиуретанов и гексогена (довольно сильной взрывчатки).

Второй по масштабам производства альдегид - масляный альдегид (получают около 2,5 млн тонн/год методом гидроформилирования). Некоторые альдегиды синтезируют только в небольших масштабах (менее 1000 тонн / год) и используют в качестве ингредиентов в парфюмерии и ароматов (в основном альдегиды с числом атомов карбона от 8 до 12)отщепление. Например, это коричный альдегид и его производные - цитраль и лилиаль.

Ацетальдегид используется для синтеза уксусной кислоты, этилового спирта, бутадиена для получения производных пиридина, пентаэритрита и кротонового альдегида, а также при синтезе поливинилацетата и пластмасс.

Альдегиды применяют для синтеза спиртов (бутиловых, 2-этилгексанола, пентаэритрита), карбоновых кислот, полимеров, антиоксидантов, пиридиновых основанийотщепление.

Список литературы:

1. http://intranet.tdmu.edu.ua/data/kafedra/internal/distance/lectures_stud/русский/1%20курс/Медицинская%20химия/06.%20Карбонильные%20соединения.%20Альдегиды%20и%20кетоны%20Карбоновые%20кислоты.Липиды..htm

  • акторы патогенности микроорганизмов. Понятие контаминации, колонизации, инфекции. Инвазивные и токсические свойства микроорганизмов.
  • Актуализация смысла действия сложения, переместительного свойства умножения, правила взаимосвязи компонентов действия умножения.
  • Аналогия-подобие предметов в каких-либо свойствах при чем таких предметов, которые в целом различны.