Мейоз - деление эукариотической клетки с уменьшением числа хромосом в два раза и образованием гамет. Происходит в два этапа (редукционный и эквационный этапы мейоза).

Значение.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер - обмен участками между гомологичными хромосомами.

Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки, наступает пауза.

Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

Телофаза I - хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца.

Динамика хромосом (n) и ДНК (с).

Профаза 1:

Лептотена Появление тонких нитей хромосом (хромосомы удвоены)

Зиготена Конъюгация хромосом

Пахитена Видны конъюгированные хромосомы

Диплотена Начало отталкивания гомологов – различима фигура, похожая на греческ. Х

Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.

Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.

Телофаза 1 может отсутствовать, или ядро может восстанавливаться

Профаза 2, Метафаза 2: по митотическому типу.

Анафаза 2: Расхождение хроматид удвоенных хромосом.

Телофаза 2: 4 гаплоидных ядра.

Схема: 2n2c – 2n4c – 1n2c – 1n1c.

Схема нарушения расхождения

хромосом и формирование патологических кариотипов.

Нормальные кариотипы человека - 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом(химеризм).

Болезни, обусловленные нарушением числа аутосом - синдром Дауна, синдром Патау, синдром Эдвардса.

Болезни, связанные с нарушением числа половых хромосом - синдром Шерешевского - Тёрнера, полисомия по Х-хромосоме, полисомия по Y-хромосоме, синдром Клайнфельтера.

Болезни, причиной которых является полиплоидия вызывают смерть еще до рождения.

Нарушения структуры хромосом:

Транслокации - обменные перестройки между негомологичными хромосомами.

Делеции - потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии - повороты участка хромосомы на 180 градусов.

Дупликации - удвоения участка хромосомы.

Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 654.

Это важный процесс в эволюционном плане, который позволяет создавать организмам разнообразные популяции в ответ на изменения окружающей среды. Без понимания значимости мейоза невозможно дальнейшее изучение таких разделов биологии как селекция, генетика, экология.

Что такое мейоз

Этот способ деления характерен для образования гамет у животных, растений и грибов. В результате мейоза образуются клетки, обладающие гаплоидным набором хромосом, также называемых половыми клетками.

В отличие от другого варианта умножения клеток - митоза, при котором количество хромосом дочерних особей характерно материнской, при мейозе происходит уменьшение количества хромосом вдвое. Это происходит в два этапа - мейоз 1 и мейоз 2. Первая часть процесса сходна с митозом - перед ней происходит удвоение ДНК, увеличение количества хромосом. Далее следует редукционное деление. В результате образуются клетки с гаплоидным (а не диплоидным) набором хромосом.

Основные понятия

Для того чтобы понять, что такое мейоз, необходимо вспомнить определения некоторых понятий, чтобы не возвращаться к ним впоследствии.

  • Хромосома - структура в ядре клетки, имеющая нуклеопротеидную природу и сосредоточившая большую часть наследственной информации.
  • Соматические и половые клетки - клетки организма, имеющие разный набор хромосом. В норме (исключая полиплоиды) соматические клетки диплоидны (2n), а половые гаплоидны (n). При слиянии двух половых клеток образуется полноценная соматическая клетка.
  • Центромера - участок хромосомы, отвечающий за экспрессию генов и связывающий хроматиды между собой.
  • Теломера - концевые участки хромосом, выполняют защитную функцию.
  • Митоз - способ деления соматических клеток, создающий в процессе идентичные им копии.
  • Эухроматин и гетерохроматин - участки хроматина в ядре. Первый сохраняет деспирализованное состояние, второй спирализован.

Стадии процесса

Мейоз клетки состоит из двух последовательных делений.

Первое деление. В период профазы 1 можно рассмотреть хромосомы даже в световой микроскоп. Строение двойной хромосомы составляют две хроматиды и центромеры. Происходит спирализация и, как следствие, укорочение хроматид в хромосоме. Мейоз начинается с метафазы 1. Гомологичные хромосомы располагаются в экваториальной плоскости клетки. Это называется выстраиванием тетрад (бивалентов) хроматида к хроматиде. В этот момент происходят процессы конъюгации и кроссинговера, они описаны ниже. При этих действиях часто теломеры перекрещиваются и накладываются друг на друга. Начинает распадаться оболочка ядра, пропадает ядрышко и становятся видны нити веретена деления. В период анафазы 1 целые хромосомы, состоящие из двух хроматид, отходят к полюсам, причем случайным образом.

В результате первого деления в стадии телофазы 1 образуются две клетки с одинарным набором ДНК (в отличие от митоза, дочерние клетки которого диплоидны). Интерфаза непродолжительна, так как не требует удвоения ДНК.

Во втором делении в стадии метафазы 2 к экваториальной части клетки отходит уже одна хромосома (из двух хроматид), образуя метафазную пластинку. Центромера каждой хромосомы делится, хроматиды расходятся к полюсам. На стадии телофазы этого деления образуются две клетки, содержащей по гаплоидному набору хромосом. Наступает уже нормальная интерфаза.

Конъюгация и кроссинговер

Конъюгация - процесс слияния гомологичных хромосом, а кроссинговер - обмен соответствующими участками гомологичных хромосом (начинается в профазе первого деления, заканчивается в метафазе 1 или в анафазе 1 при расхождении хромосом). Это два смежных процесса, которые участвуют в дополнительной рекомбинации генетического материала. Таким образом, хромосомы в гаплоидных клетках не аналогичны таковым в материнской, а существуют уже с заменами.

Разнообразие гамет

Гаметы, образованные в процессе мейоза, не гомологичны друг другу. Хромосомы расходятся в дочерние клетки независимо друг от друга, поэтому могут принести разнообразные аллели будущему потомству. Рассмотрим простейшую классическую задачу: определим типы гамет, образованные у родительского организма по двум простым признакам. Пусть у нас будет темноглазый и темноволосый родитель, гетерозиготный по этим признакам. Формула аллелей, характеризующая его, будет выглядеть как AaBb. Половые клетки будут иметь следующий вид: AB, Ab, aB, ab. То есть четыре типа. Естественно, количество аллелей в живом организме со множеством признаков будет многократно выше, значит и вариантов разнообразия гамет будет во много раз больше. Эти процессы усиливаются конъюгацией и кроссинговером, протекающими в процессе деления.

Существуют ошибки в репликации и расхождениях хромосом. Это приводит к образованию дефектных гамет. В норме такие клетки должны подвергнуться апоптозу (клеточной смерти), но иногда они сливаются с другой половой клеткой, образуя новый организм. Например, таким образом формируется болезнь Дауна у человека, связанная с одной дополнительной хромосомой.

Следует упомянуть, что образовавшиеся половые клетки в разных организмах претерпевают дальнейшее развитие. Например, у человека из одной родительской клетки образуются четыре равноценных сперматозоида - как в классическом мейозе, что такое яйцеклетка - выяснить несколько сложнее. Из четырех потенциально одинаковых клеток образуется одна яйцеклетка и три редукционных тельца.

Мейоз: биологическое значение

Почему в процессе мейоза количество хромосом в клетке уменьшается, понятно: если бы этого механизма не было, то при слиянии двух половых клеток происходило бы постоянное увеличение хромосомного набора. Благодаря редукционному делению, в процессе размножения из слияния двух гамет выходит полноценная диплоидная клетка. Таким образом, сохраняется постоянство вида, стабильность его хромосомного набора.

Половина ДНК дочернего организма будет содержать материнскую, а половина отцовскую генетическую информацию.

Механизмы мейоза лежат в основе стерильности межвидовых гибридов. Из-за того, что в клетках таких организмов находятся хромосомы от двух видов, в процессе метафазы 1 они не могут вступить в конъюгацию и процесс образования половых клеток нарушается. Плодовитые гибриды возможны только между близкими видами. В случае полиплоидных организмов (например, многие сельскохозяйственные растения) в клетках, обладающих четным набором хромосом (октоплоиды, тетраплоиды) хромосомы расходятся как и при классическом мейозе. В случае триплоидов хроматиды образуются неравномерно, велик риск получить дефектные гаметы. Эти растения размножают вегетативно.

Таким образом, понимание, что такое мейоз - фундаментальный вопрос биологии. Процессы полового размножения, накопления случайных мутаций, а также передача их потомству лежит в основе наследственной изменчивости и неопределенного отбора. Современная селекция сформирована на основе этих механизмов.

Варианты мейоза

Рассмотренный вариант деления в мейозе характерен главным образом для многоклеточных. У простейших механизм выглядит несколько иначе. В процессе него протекает одно мейотическое деление, фаза кроссинговера соответственно, тоже смещается. Такой механизм считается более примитивным. Он послужил основой делению гаплоидных клеток современных животных, растений, грибов, протекающему в две фазы и обеспечивающему лучшую рекомбинацию генетического материала.

Отличия мейоза от митоза

Подытоживая различия между этими двумя типами деления, нужно отметить плоидность дочерних клеток. Если при митозе количество ДНК, хромосом в обоих поколениях одна и та же - диплоидная, то в мейозе образуются гаплоидные клетки. При этом в результате первого процесса образуются две, а в результате второго - четыре клетки. В митозе отсутствует кроссинговер. Разнится и биологическое значение этих делений. Если цель мейоза - образование половых клеток и их последующее сливание у разных организмов, т. е. рекомбинация генетического материала в поколениях, то цель митоза - поддержание стабильности тканей, целостности организма.

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.