Текущая страница: 19 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

10.5. Дисфункция эндотелия и ее маркеры

Дисфункция эндотелия является одним из наиболее важных патогенетических механизмов многих заболеваний сердечно-сосудистой системы. В частности, дисфункция эндотелия может вызывать спазм сосудов, усиленное тромбообразование и усиленную адгезию лейкоцитов к эндотелию, что сопровождается нарушением регионарного кровообращения и микроциркуляции. Причинами эндотелиальной дисфункции могут быть различные факторы:

– генетические особенности;

– возрастные изменения;

– дислипопротеинемия (гиперхолестеринемия);

– гиперцитокинемия;

– гипергомоцистеинемия;

– гипергликемия;

– гемодинамический фактор (гипертензия, ишемия, венозный застой);

– эндогенные интоксикации (почечная печеночная недостаточность, панкреатит и др.);

– экзогенные интоксикации (курение и др.).

В широком смысле эндотелиальная дисфункция может быть определена как:

– образование конформационно измененных эндотелиальных факторов;

– уменьшение образования эндотелиальных факторов;

– нерегулируемое образование эндотелиальных факторов.

В последнее время сложилось более узкое представление об эндотелиальной дисфункции как о состоянии эндотелия, при котором имеется недостаточная продукция оксида азота. Поскольку оксид азота принимает участие в регуляции практически всех функций эндотелия (регуляция сосудистого тонуса, тромборезистентность сосудов, регуляция адгезии лейкоцитов и проницаемости сосудов), а кроме того, является фактором, наиболее чувствительным к повреждению, такое представление о дисфункции эндотелия достаточно корректно, хотя и не является полным. Важнейшим фактором нарушения образования и/или биодоступности оксида азота является избыточное образование активных форм кислорода, что наблюдается при многих заболеваниях.

Кроме понятия «дисфункция эндотелия» необходимо выделить также понятия «стимуляция эндотелия» (при которой под действием различных факторов происходит увеличение активности eNOS, циклооксигеназы-1 и других ферментов эндотелиоцитов с увеличением образования оксида азота, простациклина и других БАВ, а также высвобождение накопленных в эндотелиоцитах факторов), и «активация эндотелия», сопровождающиеся экспрессией генов и активацией синтетических процессов в эндотелиоцитах.

В клинической практике функциональную активность эндотелия оценивают преимущественно с помощью инструментальных методов. Для этого исследуют эндотелийзависимую вазодилатацию при фармакологических пробах (например, с ацетилхолином), пробе с реактивной гиперемией (по изменению напряжения сдвига при прекращении/восстановлении кровотока по плечевой артерии), пробе с холодовым или ментальным стрессом (при исследовании кровотока в миокарде) и некоторых других.

Другим методом оценки выраженности эндотелиальной дисфункции является лабораторная диагностика – оценка содержания в крови различных веществ, образующихся в эндотелии (табл. 10.5). В настоящее время существуют методики определения в крови практически всех известных веществ, образующихся в эндотелии, однако не все показатели имеют одинаковую диагностическую ценность, поскольку значительная часть маркеров эндотелиальной дисфункции образуется не только в эндотелии, но и в других клетках.

По скорости образования в эндотелии различных факторов (что связано во многомисихструктурой), а также по преимущественному направлению секреции этих веществ (внутриклеточная или внеклеточная) можно разделить вещества эндотелиального происхождения на следующие группы.

Факторы, постоянно образующиеся в эндотелии и выделяющиеся из клеток в базолатеральном направлении или в кровь, например NO, простациклин. Скорость образования этих факторов связана с быстро меняющимися условиями регуляции, в частности с изменением напряжения сдвига или действием вазоактивных веществ, цитокинов. Почти любое повреждение эндотелия сопровождается либо нарушением синтеза, либо снижением биодоступности этой группы веществ. В то же время при этом в эндотелии образуются индуцируемые синтаза оксида азота и циклооксигеназа-2, что приводит к значительному повышению выработки NO и простациклина.


Таблица 10.5

Маркеры эндотелия, изменение концентрации которых в крови является признаком эндотелиальной дисфункции


Факторы, накапливающиеся в эндотелии и выделяющиеся из него при стимуляции (фактор Виллебранда, Р-селектин, тканевой активатор плазминогена). При действии катехоламинов, гистамина, тромбина, активированных фрагментов системы комплемента, цитокинов, вазопрессина и других происходит высвобождение фактора Виллебранда и t-PA в кровь, перемещение на мембрану эндотелиоцита Р-селектина с незначительным поступлением его в кровь (растворенный Р-селектин). Эти факторы могут попадать в кровь не только при стимуляции эндотелия, но и при его активации и повреждении.

Факторы, синтез которых в нормальных условиях практически не происходит, однако резко увеличивается при активации эндотелия (эндотелин-1, ICAM-1, VCAM-1, E-селектин, PAI-1). Эти факторы либо экспрессируются на эндотелиоцитах (ICAM-1, VCAM-1, E-селектин) и частично выделяются в кровь (растворимые ICAM-1, VCAM-1, E-селектин), либо секретируются (эндотелин-1, PAI-1).

Факторы, являющиеся внутриклеточными белками (тканевой фактор, аннексин-V) либо являющиеся мембранными рецепторами эндотелия (тромбомодулин, рецептор протеина С). Высвобождение этих факторов в кровь наблюдается при повреждении эндотелия и апоптозе.

Таким образом, можно выделить несколько вариантов изменения функциональной активности эндотелия:

– дисфункция эндотелия (уменьшение синтеза факторов первой группы, синтез конформационно измененных эндотелиальных факторов, или нерегулируемый синтез эндотелиальных факторов);

– стимуляция эндотелия (повышение содержания в крови факторов второй группы);

– активация эндотелия (повышение содержания в крови факторов 1 – 3 групп). Косвенным методом оценки состояния эндотелия является исследование содержания в крови факторов, повреждающих эндотелий, уровень которых коррелирует с эндотелиальной дисфункцией. К таким факторам (медиаторам повреждения эндотелия) относятся:

– гиперхолестеринемия (уровень липопротеинов низкой плотности, липопротеинов очень низкой плотности);

С-реактивный белок;

антифосфолипидные антитела;

– ангиотензин-II;

– гипергомоцистеинемия;

– асимметричный диметиларгинин (ADMA);

– липопротеин (а);

– ксантиноксидаза;

– цитокины (ИЛ-1β, ФНО-α, ИЛ-8 и др.).

Как правило, в конкретной клинической ситуации имеется сразу несколько вариантов изменения функциональной активности эндотелия, поэтому в крови присутствуют самые различные эндотелиальные факторы. В связи с этим, все вышеописанные изменения нередко объединяются термином «дисфункция эндотелия». Дисфункция эндотелия может быть самостоятельной причиной нарушения кровообращения в органе, поскольку нередко провоцирует ангиоспазм или тромбоз сосудов, что, в частности, наблюдается при некоторых формах ишемической болезни сердца. С другой стороны, нарушения регионарного кровообращения (ишемия, венозный застой) тоже могут приводить к дисфункции эндотелия. Однако, поскольку проявления дисфункции при различных заболеваниях имеют свою специфику, как и степень нарушения образования в эндотелии отдельных эндотелиальных факторов, целесообразно выделить следующие типовые формы дисфункции эндотелия:

вазомоторная : нарушение образования оксида азота, простациклина, EDHF, повышение синтеза эндотелина-1. Эта форма дисфункции является важным звеном патогенеза развития артериальной гипертензии, ангиоспастической ишемии;

гемостатическая : изменение образования тромбогенных и атромбогенных эндотелиальных факторов, что, например, наблюдается при артериальном и венозном тромбозе, болезни Виллебранда и других;

адгезионная : гиперэкспрессия эндотелиальных молекул адгезии, гиперцитокинемия, системная воспалительная реакция, септический шок;

ангиогенная : избыточное образование ангиогенных факторов, возможно, изменение чувствительности эндотелия к ангиогенным факторам (опухолевый рост, хроническое воспаление).

Выделение отдельных форм дисфункции эндотелия имеет определенное практическое значение для оптимизации подходов к ее фармакологической коррекции. Данные формы эндотелиальной дисфункции редко существуют изолированно, но, как правило, доминируют при том или другом заболевании. Не исключено, что различные формы эндотелиальной дисфункции возникают в связи с преимущественным действием различных медиаторов дисфункции эндотелия.

На основании экспериментальных и клинических исследований мы полагаем, что системные изменения функциональной активности эндотелия – один из механизмов генерализации патологических процессов. Дальнейшее исследование эндотелиальной дисфункции, ее форм, и их зависимость от профиля факторов, влияющих на эндотелий, является перспективным направлением исследований в медицине.

Литература

Дисфункция эндотелия. Патогенетическое значение и методы коррекции / под ред. проф. Н. Н. Петрищева. – СПб.: ИИЦ ВМА, 2007. – 296 с.

Aird W. C. Spatial and temporal dynamics of the endothelium // J. Thromb. Haemost. – 2005. – № 3(7). – P. 1392 – 1406.

Boger R. H. Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the «L-Arginine Paradox» and Acts as a Novel Cardiovascular Risk // Factor. J. Nutr. – 2004. – Vol. 134 – P. 2842 – 2847.

Harder D. R . . Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue // J. Vasc. Res. – 1997. – Vol. 34(3). – P. 237 – 243.

Mateo A. N., Artinano A. A . Highlights on endothelins: a review // Pharmacol. Res. – 1997. – Vol. 36 (5). – P. 339 – 351.

Silva P. M . From endothelial dysfunction to vascular occlusion: role of the renin-angiotensin system // Rev. Port. Cardiol. – 2010. – 29(5). – P. 801 – 824.

Wong W. T . . Endothelial dysfunction: the common consequence in diabetes and hypertension // J. Cardiovasc. Pharmacol. – 2010. – Vol. 55(4). – P. 300 – 307.

ТЕМА 11
КАХЕКСИЯ КАК ТИПОВОЙ КЛИНИЧЕСКИЙ СИНДРОМ

В настоящее время многими авторами отождествляются понятия «истощение» и «кахексия». Однако при изучении процессов, лежащих в основе развития этих двух патологических состояний, можно сделать вывод об их принципиальном различии. Процессы, включающиеся при истощении, направлены на максимально адекватное поддержание жизнедеятельности организма в условиях стресса, то есть механизм истощения – это адаптационный механизм, нацеленный на сохранение гомеостаза. Кахексия же – состояние, возникающее в изначально больном организме, является следствием заболевания.

Истощение – это патологическое состояние при недостаточном или полном прекращении поступления пищи, которое на определенной стадии развития характеризуют расстройства деятельности всех функциональных систем, а также дефицит массы (при истощении дефицит жировой ткани может составлять 20 – 25 % и более, при развитии кахексии – ниже 50 %) и энергии во всех органах и клеточных элементах организма. Основное звено патогенеза, которое можно представить как низкую, относительно потребностей клеток, доставку к ним питательных веществ, источников свободной энергии и субстратов для анаболических процессов.

11.1. Этиология

Различают экзогенные и эндогенные причины истощения.

К экзогенным причинам относятся:

– абсолютное, полное, неполное и частичное голодание;

низкая калорийность пищи, не способная восполнить энергозатраты организма.

Абсолютное голодание – это экзогенное голодание при полном отсутствии пищи и воды. Полное – это голодание при отсутствии пищи, но с сохранением питья. Неполное голодание характеризуется питанием, недостаточным для удовлетворения потребностей организма в нутриентах. Частичное голодание – непоступление одного или нескольких пищевых веществ: белков, жиров, минеральных веществ и витаминов. Данный вид голодания в чистом виде возможен только в эксперименте. В настоящее время голодание выходит за рамки биологической проблемы, в большей степени оно зависит от социальных условий. В слаборазвитых странах постоянно испытывают голод большие массы людей, 40 % из них составляют дети. Даже в странах с высоким уровнем развития голодание возможно при стихийных бедствиях, военных конфликтах, техногенных катастрофах.

Эндогенными причинами истощения являются факторы, связанные с различными заболеваниями. Их подразделяют на первичные и вторичные.

Первичные причины связаны с патологическими состояниями, подавляющими синтез нейропептида Y в гипоталамусе (травмы мозга, ишемия гипоталамуса, нервно-психические расстройства) и вызывающих гипосенситизацию клеток-мишеней к нейропептиду Y.

Кахексия на данный момент считается распространенным и опасным осложнением различных хронических заболеваний, с которым связывают неблагоприятный прогноз (табл. 11.1). Кахексия (wasting desease syndrome) – комплексный метаболический синдром, связанный с основным заболеванием и характеризующийся потерей мышечной массы или без потери массы жировой ткани.


Таблица 11.1

Заболевания, характеризующиеся наличием кахексии


Диагностика. При выборе критериев дифференциальной диагностики следует руководствоваться представлениями о патогенезе данных состояний. Большая часть критериев отображена в табл. 11.2.


Таблица 11.2

Показатели истощения и кахексии

Примечания : «–» – снижение показателя; «+» – повышение показателя; «0» – отсутствие изменений.


Оценка потери массы тела – один из самых доступных в практике критериев, но, к сожалению, не самый информативный. Следует понимать, что потеря массы тела у истощенного происходит в основном за счет расходования организмом жиров, и только в далеко зашедших случаях организм начинает использовать белки в качестве источника энергии. У больных же, страдающих кахексией, потеря веса может быть в принципе не так заметна, но происходит она за счет белков (в основном белков миофибрилл поперечнополосатой мускулатуры). Необходимо указать, что кахексия зачастую может сопровождаться и истощением, так как в силу определенных причин у больных кахексией происходит снижение аппетита.

Следующий часто упоминаемый в литературе критерий является логичным дополнением первого – это улучшение самочувствия больного в результате полноценного питания. Для истощенных больных полноценное питание является необходимым условием успешности лечения, в то время как для страдающих кахексией оно не приносит желаемых результатов.

При истощении снижается концентрация глюкозы в крови, содержание инсулина в крови также уменьшено. При кахексии в организме развивается резистентность к инсулину, и, несмотря на достаточное поступление глюкозы, ее усваивания не происходит. У больных с кахексией наблюдается повышение секреции таких веществ как, например, кортизол и миостатин, отвечающих за активацию катаболических реакций в организме.

Истощение характеризуется отсутствием как синтеза, так и распада белка (если речь идет не о заключительной стадии истощения). А для кахексии характерен усиленный распад белков (в крови могут быть обнаружены специфические маркеры), а также активный синтез в печени белков острой фазы.

Основной обмен при истощении, как это следует из вышесказанного, снижен, а при кахексии – повышен. Такое состояние при кахексии также называют гиперметаболизмом.

С клинической точки зрения предлагается следующая схема диагностики.

Кахексия диагностируется, если выполняются все следующие условия:

– менее чем за 12 месяцев происходит потеря более 50 % исходной массы тела;

– присутствует сопутствующее заболевание (см. табл. 11.1);

– наблюдаются следующие изменения: снижение двигательной способности мышечного аппарата, усталость, анорексия, измененные биохимические показатели крови (содержание белков острой фазы, инсулина, кортизола).

11.2. Патогенез истощения

В развитии полного голодания принято выделять три периода.

В первом, начальном периоде , который длится 5 – 7 дней, отмечается повышение основного обмена с увеличением энергетических затрат, а также наибольшая потеря веса за сутки. Основные жизненные процессы поддерживаются за счет депо углеводов в печени и мышцах. Этот период характеризуется: снижением уровня глюкозы в крови, уменьшением выработки инсулина и повышением уровня глюкагона, который в свою очередь способствует процессу гликогенолиза в печени. При снижении запасов гликогена, а также концентрации глюкозы и других нутриентов, секреция инсулина падает до базального уровня и происходит возбуждение пищевого центра на уровне латеральных ядер гипоталамуса – центра голода. Активность этого центра возрастает под действием нейропептида Y. Снижение массы жира приводит к снижению выделения гормона лептина, усиливается чувство голода, который, в свою очередь, активирует симпатический отдел автономной нервной системы. В результате растет секреция гормонов-антагонистов инсулина. Возникает изменение соотношения секреции инсулина и гормонов с преимущественно катаболическим действием, что стимулирует гликогенолиз, липолиз, протеолиз и глюконеогенез при угнетении гликогенообразования, синтеза жиров и белков. В процессе голодного стресса, в период экстренной адаптации, наибольшее влияние оказывают гормоны: адренокортикотропный, вазопрессин, глюкокортикоиды, катехоламины.

Адренокортикотропный гормон вызывает усиление липолиза, увеличивает синтез соматотропного гормона и одновременно тормозит синтез мочевины печенью. Действие соматотропного гормона направлено на усиление использования аминокислот в качестве энергетического субстрата, а также усиление процессов катаболизма жиров и подавление синтеза инсулина. Наряду с этими процессами под действием глюкокортикоидов усиливаются процессы глюконеогенеза из аминокислот, которые транспортируются из мышц в печень. На фоне этих процессов синтез белка в соединительной ткани, коже, жировой ткани, лимфоидных органах тормозится. Вазопрессин на начальных этапах голодания усиливает липолиз и захват жирных кислот печенью, но тормозит синтез кетоновых тел.

Таким образом, первый период голодания характеризуется усилением процессов глюконеогенеза из депо жировой, а также соединительной ткани и скелетных мышц (табл. 11.3).

При длительном полном голодании только нейроны головного и спинного мозга используют глюкозу как энергетический субстрат. Клетки всех других тканей и органов для биологического окисления утилизируют свободные жирные кислоты и кетоновые тела (бета-гидроксимасляная и ацетоуксусная кислоты).

Снижение процесса дезаминирования и переаминирования, начало усвоения мозгом кетоновых тел в качестве энергетического субстрата являются показателями начала второго периода (фазы стабильной долговременной адаптации по А. Ш. Зайчику и Л. П. Чурилову).


Таблица 11.3

Стадии приспособительных изменений обмена веществ в органах и тканях при голодании


При полном голодании, длящемся более 72 ч, падает выделение азота с мочой. Это свидетельствует о падении утилизации белка как источника свободной энергии. Таким образом, начало этого периода характеризуется снижением потребления аминокислот в процессе глюконеогенеза и нарастанием синтеза кетоновых тел. Нарастание кетоацидоза идет, в основном, за счет окисления липидов на фоне угнетения основных ферментов цикла Кребса. В большинстве органов развиваются патологические изменения, возникает нарушение водно-солевого равновесия (потеря калия, фосфатов, кальция). В плазме крови увеличивается концентрация холестерина, особенно липопротеидов очень низкой плотности, связанных с нарушением метаболизма печени. Это может обусловить развитие артериальной гипертензии. Интенсивность обмена веществ в целом снижена, происходит торможение окислительных процессов в митохондриях, развивается гипоэнергетическое состояние.

При продолжении голодания нарастает атрофия органов (в наименьшей степени снижается масса сердечной мышцы и мозга). Прогрессируют процессы торможения в нервной системе, со стороны сердечно-сосудистой системы возможны развития аритмий. Отмечается анемия, гипопротеинемия (в первую очередь сокращается фракция альбуминов).

Третий период (терминальный период декомпенсации) наблюдается при потере 40 – 50 % массы тела при полном использовании запасов жира. Этот период характеризуется распадом белков внутренних органов, распадом нуклеиновых кислот клеточных ядер, приводящих к усилению выделения с мочой азота мочевины, аминокислот, калия, фосфора. Постепенно нарастает угнетение центральной нервной системы, развивается коматозное состояние и гибель организма.

Таким образом, физиологическую адаптацию к экзогенному голоданию характеризует известная стадийность изменений обмена веществ со сменой основных источников свободной энергии, высвобождаемой при биологическом окислении и улавливаемой клеткой в виде макроэргов.

Поскольку голодание является непосредственной угрозой для жизни, различные системы организма пытаются защитить его от этой опасности. В связи с этим усиление чувства голода является стимулом для активизации поиска пищи (рис. 11.1).

Содержание инсулина, ключевого гормона гомеостаза, снижается в крови при голодании вследствие гипогликемии (повышается при возобновлении питания) и является основным фактором, обуславливающим переключение метаболизма с углеводного субстрата на жировой. Такое изменение обмена веществ обеспечивается разнообразными биохимическими процессами в жировой ткани, мышцах и печени. Инсулин влияет на аппетит, расходование энергии и нейроэндокринный статус организма. Проникая через гематоэнцефалический барьер, инсулин подавляет экспрессию нейропептида Y, который синтезируется в гипоталамусе и является основным активатором аппетита. Таким образом, при пониженном уровне инсулина в крови синтезируется нейропептид Y, вследствие чего повышается аппетит и корректируется энергетический баланс.

Грелин – гормон, синтезируемый в основном клетками желудка. Основным эффектом действия этого гормона является стимуляция выработки соматотропина. Грелин обладает и центральным действием, в результате чего усиливается чувство голода. Установлено, что грелин способен блокировать действие лептина. Лептин – гормон цитокинового типа, секретируемый, главным образом, адипоцитами.


Рис. 11.1 . Взаимодействие гормонов, влияющих на аппетит


В норме он снижает аппетит, воздействуя на гипоталамус и подавляя экспрессию нейропептида Y. При голодании уровень лептина быстро снижается, что ведет к уменьшению энергозатрат, усилению чувства голода. Было выяснено, что лептин уменьшает секрецию инсулина и может вызывать резистентность к нему. Лептин подавляет влияние инсулина на жировую клетчатку по принципу обратной связи, то есть выступает в качестве антагониста инсулина. Еще одним эффектом лептина является его воздействие на гипоталамо-гипофизарно-надпочечниковую систему. Лептин блокирует активацию данной системы (во время голодания этот блок исчезает) за счет снижения его содержания в крови и повышает секрецию глюкокортикоидных гормонов, в частности кортизола у человека. Глюкокортикоиды активируют глюконеогенез в печени, что необходимо для обеспечения глюкозой головного мозга в условиях ее ограниченного поступления в организм. В терминальной стадии голодания повышение концентрации кортизола может означать активацию протеолиза в мышцах для переработки аминокислот в глюкозу.

В ряде исследований показано, что снижение содержания лептина в крови при голодании сопровождается также снижением содержания тироксина. Поскольку тироксин является основным регулятором скорости основного обмена, а точнее, активатором катаболизма и стимулятором деления клеток, то снижение его концентрации в крови при голодании благоприятно для организма. На более поздних стадиях голодания могут проявляться отрицательные последствия гипотиреоза. Известно, что in vitro лептин индуцирует пролиферацию и блокирует апоптоз наивных Т-лимфоцитов и Т-клеток памяти, активирует продукцию цитокинов макрофагами, способствует заживлению ран, ангиогенезу. Таким образом, лептин играет роль иммуномодулятора, и при недостатке его в крови человек становится более восприимчивым к инфекциям. Из вышесказанного следует, что лептин играет определенную роль в изменении процессов метаболизма при голодании.

Внешними проявлениями истощения, помимо исхудания, являются слабость и значительная утомляемость при обычной работе, ухудшение когнитивных функций. Гипотермия нарастает по мере увеличения степени истощения. Вышеперечисленные симптомы являются прямым следствием гипотиреоза.

Еще одним проявлением гипотиреоза у истощенных является брадикардия, доходящая в тяжелых случаях до 30 ударов в минуту, и понижение артериального давления. Данные клинические проявления обусловлены также синтезом аномального реверсивного трийодтиронина из-за отсутствия фермента дейодиназы, вследствие подавления ее стрессовыми гормонами.

Постоянным симптомом у истощенных людей является полиурия, при этом суточное количество выделяемой мочи достигает 3 – 6 литров. Характерно также учащение мочеиспускания, а у части больных появляется ночное недержание мочи. Нарушения мочевыделения не связаны, однако, со структурными изменениями в почках. Эти изменения объясняются атрофией коркового вещества надпочечников и связанным с ней гипоальдостеронизмом и, соответственно, нарушением реабсорбции воды в дистальных канальцах.

По мере прогрессирования истощения возникают так называемые голодные поносы. Одним из факторов появления жидкого стула при голодании является недостаток витамина РР (никотиновой кислоты). Считается, что механизм пелларгической диареи связан с низкой активностью некоторых ферментов, по отношению к которым витамин РР выступает в качестве кофактора.

Другим фактором развития поносов является внешнесекреторная недостаточность поджелудочной железы, связанная с атрофией ее экзокринного аппарата. Кроме того, возможно повреждение, самопереваривание и атрофия желез, ворсинок кишечного эпителия.

Фактором развития диареи может служить и недостаток жирных кислот в просвете толстой кишки. Функция толстой кишки, заключающаяся, в том числе и во всасывании натрия и воды, зависит от наличия в просвете определенных жирных кислот. Их наличие обусловлено ферментацией клетчатки кишечными бактериями. При отсутствии этих жирных кислот (в том числе n-бутирата) нарушается всасывание и усиливается секреция натрия, вслед за которым в просвет кишки поступает вода.

Голодные поносы развиваются только при тяжелом истощении и в его финале примерно за две недели до смерти. В эти же сроки появляются отеки. Поскольку онкотическое давление плазмы крови понижается, жидкость по градиенту давления выходит из сосудистого русла и накапливается в тканях, серозных полостях и в просвете кишечника.

Высокий уровень инфекционной заболеваемости у истощенных людей, наряду с белковой и энергетической недостаточностью питания, связан и с гиповитаминозами, ведущими к нарушению иммунитета. Так, недостаток в рационе витамина А сопровождается снижением фагоцитарной активности полиморфноядерных лейкоцитов и выработки плазматическими клетками антител. Их выработка страдает также при дефиците витамина В1. На фоне изменений метаболизма у голодающих уменьшается подвижность фагоцитов, Т– и В-лимфоцитов, данный эффект развивается и при дефиците витамина Е. Таким образом, истощенные люди чаще болеют инфекционными заболеваниями, в первую очередь пневмонией, а также подвержены возникновению туберкулеза.

Нарушение функционального состояния эндотелия сосудов в клинических условиях можно диагностировать по биохимическим и функциональным маркерам. К биохимическим маркерам поврежденного эндотелия относятся повышение концентрации в крови биологически активных веществ, синтезируемых эндотелием или экспрессируемых на его поверхности.

Наиболее значимые из них:

Фактор Виллебранда;

Эндотелии-1;

Молекулы адгезии (Е-селектин, Р-селектин, VCAM-1 и др.);

Тканевой активатор плазминогена;

Тромбомодулин;

Фибронектин.

Фактор Виллебранда (vWf) - это гликопротеин, синтезируемый эндотелиальными клетками сосудов. Его концентрация в плазме крови в норме не превышает 10 мкг/мл. Фактор Виллебранда необходим для нормального функционирования фактора VIII свертывания крови. Другой важной функцией фактора VIII является образование агрегатов из тромбоцитов в местах поврежденного эндотелия. В этих случаях происходят связывание vWf с субэндотелием и образование мостика между поверхностью субэндотелия и тромбоцитами. Значение vWf в регуляции системы гемостаза подтверждается также тем, что при врожденной неполноценности или дисфункции этого белка развивается достаточно часто наблюдаемое заболевание - болезнь Виллебранда. В ряде проспективных исследований, выполненных в последние годы, показано, что высокий уровень vWf у лиц с сердечно-сосудистой патологией может быть важным для прогноза вероятности инфаркта миокарда и летального исхода. Считается, что уровень vWf отражает степень поражения сосудистого эндотелия. Вопеи и соавт. первыми предложили определять уровень vWf в плазме для оценки степени повреждения сосудистого эндотелия. Предложенная ими гипотеза основывалась на том, что у больных с облитерирующим атеросклерозом конечностей или септицемией повышенный уровень vWf прямо отражал обширность сосудистого поражения. В последующих исследованиях показано повышение уровня vWf при разных клинических состояниях с повреждением эндотелиальных клеток и обнажением субэндотелиального слоя (при АГ, острой и хронической почечной недостаточности, ДН и васкулите).

Данные, полученные в отделении нефропатии ГУ ЭНЦ РАМН, указывают на то, что по мере нарастания тяжести АГ и диабетического поражения почек увеличивается концентрация vWf в плазме крови, что свидетельствует о тяжелом повреждении сосудистого эндотелия (рис. 5.3).

Эндотепин-l. В 1988 г. М. Yanagisawa и соавт. охарактеризовали вазоконстриктор эндотелиального происхождения как пептид, состоящий из 21 аминокислотного остатка, и назвали его эндотелином. Дальнейшие исследования показали, что существует семейство эндо- телинов, которое состоит по меньшей мере из 4 эндотелиновых пептидов со сходной химической структурой. В настоящее время изуче-



на химическая структура эндотелина-1, эндотелина-2 и эндотелина-3. Большая часть (до 70-75 %) эндотелина-1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. Связывание эндотелина-1 со специфическими рецепторами на мембранах гладкомышечных клеток приводит к их сокращению и, в конечном счете, к вазоконстрикции. В экспериментах на животных показано, что in vivo эндотелины являются самыми мощными из известных в настоящее время вазоконстрикторных факторов.

В исследовании, проведенном в ГУ ЭНЦ РАМН, мы показали, что у больных СД концентрация эндотелина-1 возрастает по мере нарастания тяжести ДН и АГ (рис. 5.4).

Молекулы адгезии. Маркерами активированного эндотелия и лейкоцитов являются растворимые формы адгезивных молекул в сыворотке крови (Adams, 1994). Наибольшую диагностическую значимость имеют молекулы адгезии семейств селектинов и иммуноглобулинов (Е-селектин, межклеточные молекулы - ICAM-1, -2, -3 и поверхностная молекула адгезии - VCAM-1).

Е-селектин, или ELAM-1 (англ. Endothelial Leucocyte Adhesion Molecule) - адгезивная молекула, выявляемая на эндотелиальных клетках. При воздействии повреждающих факторов активированный эндотелий синтезирует и экспрессирует эту молекулу, что создает предпосылки для последующего рецепторного взаимодействия, реализующегося в адгезии лейкоцитов и тромбоцитов с развитием стаза крови.

ICAM-1 (англ. Intercellular Adhesion Molecule, CD54) - адгезивная молекула гемопоэтических и негемопоэтических клеток. Усиливает

экспрессию этой молекулы воздействие IL-2, фактора некроза опухолей a. ICAM-1 может существовать в мембраносвязанной и растворимой (сывороточной) формах (sICAM-1). Последняя появляется в сыворотке крови в результате протеолиза и слущивания ICAM-1 с мембраны ICAM-1 -позитивных клеток. Количество сывороточной sICAM-1 коррелирует с выраженностью клинических проявлений заболевания и может служить признаком активности процесса.

VCAM-1 (англ. Vascular Cellular Adhesion Molecule, CD106) - молекула адгезии сосудистых клеток, экспрессируется на поверхности активированного эндотелия и других типах клеток. Появление растворимой биологически активной формы sVCAM-І в сыворотке также может происходить в результате протеолиза и отражать активность процесса.

Перечисленные молекулы адгезии (Е-селектин, 1САМ-1 и VCAM-1) рассматриваются как возможные основные маркеры, отражающие процесс активации эндотелиальных клеток и лейкоцитов.

Нарастание микрососудистых осложнений и АГ при СД сопровождается увеличением экспрессии адгезивных молекул, указывающим на тяжелое и необратимое повреждение клеток эндотелия .

Функциональным маркером поврежденного эндотелия является нарушение эндотелийзависимой вазодилатации сосудов, сохранность которой обеспечивается секрецией NO. Именно ему принадлежит роль модератора основных функций эндотелия. Это соединение регулирует активность и последовательность запуска всех остальных биологически активных веществ, продуцируемых эндотелием. NO не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, NO является базовым фактором антиатерогенеза.

К сожалению, NO-продуцирующая функция эндотелия наиболее ранима. Причиной этому является высокая нестабильность молекулы NO, по природе своей свободного радикала. В результате благоприятное антиатерогенное действие NO нивелируется и уступает токсическому атерогенному действию других факторов поврежденного эндотелия.

Вследствие высокой нестабильности молекулы NO прямое измерение его концентрации в крови практически невозможно. Поэтому для оценки NO-синтетической функции эндотелия используется непрямой и неинвазивный метод, основанный на изучении ответа эндотелия на различные стимулы (в частности, на реактивную гиперемию). При этом исследуется изменение диаметра плечевой или лучевой артерии (при помощи высокоразрешающей ультразвуковой допплерографии) в ответ на ее кратковременное пережатие (5 мин) с помощью пневматической манжеты. Расширение плечевой артерии после такого пережатия обусловлено выделением NO эндотелием артерий. Доказательства именно эндотелиальной зависимости расширения артерий получено в исследованиях с использованием специфического ингибитора NO - L-NMMA, который снижал почти на 70 % наблюдаемый эффект расширения. В норме эндотелийзависимое расширение плечевой артерии в ответ на реактивную гиперемию составляет 8-10 %. Уменьшение этого показателя свидетельствует о низкой продукции NO эндотелием сосудов.

В исследовании, проведенном в ГУ ЭНЦ РАМН, убедительно продемонстрировано, что по мере нарастания тяжести АГ и ДН снижается эндотелийзависимая вазодилатация плечевой артерии, что свидетельствует о выраженном нарушении функции эндотелия у этих больных .

Патология сердечно-сосудистой системы продолжает занимать основное место в структуре заболеваемости, смертности и первичной инвалидизации, являясь причиной уменьшения общей продолжительности и ухудшения качества жизни пациентов как во всем мире, так и в нашей стране. Анализ показателей состояния здоровья населения Украины свидетельствует, что заболеваемость и смертность от болезней кровообращения остаются высокими и составляют 61,3% от общего показателя смертности. Поэтому разработка и внедрение мероприятий, направленных на улучшение профилактики и лечения сердечно-сосудистых заболеваний (ССЗ), являются актуальной проблемой кардиологии.

Согласно современным представлениям, в патогенезе возникновения и прогрессирования многих ССЗ — ишемической болезни сердца (ИБС), артериальной гипертензии (АГ), хронической сердечной недостаточности (ХСН) и легочной гипертензии (ЛГ) — одну из основных ролей играет эндотелиальная дисфункция (ЭД).

Роль эндотелия в норме

Как известно, эндотелий представляет собой тонкую полупроницаемую мембрану, отделяющую кровоток от более глубоких структур сосуда, которая непрерывно вырабатывает огромное количество биологически активных веществ, в связи с чем является гигантским паракринным органом.

Главная роль эндотелия состоит в поддержании гомеостаза путем регуляции противоположных процессов, происходящих в организме:

  1. тонуса сосудов (баланса вазоконстрикции и вазодилатации);
  2. анатомического строения сосудов (потенцирование и ингибирование факторов пролиферации);
  3. гемостаза (потенцирование и ингибирование факторов фибринолиза и агрегации тромбоцитов);
  4. местного воспаления (выработка про- и противовоспалительных факторов).

Основные функции эндотелия и механизмы, с помощью которых он осуществляет эти функции

Эндотелий сосудов выполняет ряд функций (таблица), важнейшей из которых является регуляция сосудистого тонуса. Еще R.F. Furchgott и J.V. Zawadzki доказали, что расслабление сосудов после введения ацетилхолина происходит вследствие высвобождения эндотелием эндотелиального фактора релаксации (ЭФР), и активность этого процесса зависит от целости эндотелия. Новым достижением в изучении эндотелия было определение химической природы ЭФР — азота оксида (NO).

Основные функции эндотелия сосудов

Функции эндотелия

Основные обеспечивающие механизмы

Атромбогенность сосудистой стенки

NO, t-РА, тромбомодулин и другие факторы

Тромбогенность сосудистой стенки

Фактор Виллебранда, РАI-1, РАI-2 и другие факторы

Регуляция адгезии лейкоцитов

Р-селектин, Е-селектин, IСАМ-1, VСАМ-1 и другие молекулы адгезии

Регуляция тонуса сосудов

Эндотелии (ЭТ), NO, РGI-2 и другие факторы

Регуляция роста сосудов

VEGF, FGFb и другие факторы

Азота оксид как эндотелиальный фактор релаксации

NO — это сигнальная молекула, которая является неорганическим веществом со свойствами радикала. Малые размеры, отсутствие заряда, хорошая растворимость в воде и липидах обеспечивают ей высокую проницаемость сквозь клеточные мембраны и субклеточные структуры. Время существования NO составляет около 6 с, после чего при участии кислорода и воды он превращается в нитрат (NO 2) и нитрит (NO 3) .

NO образуется из аминокислоты L-аргинина под влиянием ферментов NO-синтаз (NOS). В настоящее время выделены три изоформы NOS: нейрональная, индуцибельная и эндотелиальная.

Нейрональная NOS экспрессируется в нервной ткани, скелетных мышцах, кардиомиоцитах, эпителии бронхов и трахеи. Это конституциональный фермент, модулируемый внутриклеточным уровнем ионов кальция и принимающий участие в механизмах памяти, координации между нервной активностью и сосудистым тонусом, реализации болевого раздражения.

Индуцибельная NOS локализована в эндотелиоцитах, кардиомиоцитах, гладкомышечных клетках, гепатоцитах, но основной ее источник — макрофаги. Она не зависит от внутриклеточной концентрации ионов кальция, активируется под влиянием различных физиологических и патологических факторов (провоспалительные цитокины, эндотоксины) в случаях, когда в этом есть необходимость.

Эндотелиальная NOS — конституциональный фермент, регулируемый содержанием кальция. При активации этого фермента в эндотелии происходит синтез физиологического уровня NO, приводящего к релаксации гладкомышечных клеток. NO, образующийся из L-аргинина, при участии фермента NOS активирует в гладкомышечных клетках гуанилатцикпазу, стимулирующую синтез циклического гуанозинмонофосфата (ц-ГМФ), который является основным внутриклеточным мессенджером в сердечно-сосудистой системе и снижает содержание кальция в тромбоцитах и гладких мышцах. Поэтому конечными эффектами NO являются дилатация сосудов, торможение активности тромбоцитов и макрофагов. Вазопротекторные функции NO заключаются в модуляции высвобождения вазоактивных модуляторов, блокировании окисления липопротеинов низкой плотности, подавлении адгезии моноцитов и тромбоцитов к сосудистой стенке.

Таким образом, роль NO не ограничивается только регуляцией сосудистого тонуса. Он проявляет ангиопротекторные свойства, регулирует пролиферацию и апоптоз, оксидантные процессы, блокирует агрегацию тромбоцитов и оказывает фибринолитический эффект. NO ответственен также за противовоспалительные эффекты.

Итак, NO оказывает разнонаправленные эффекты:

  1. прямое отрицательное инотропное действие;
  2. вазодилататорное действие:

- антисклеротическое (тормозит клеточную пролиферацию);
- антитромботическое (препятствует адгезии циркулирующих тромбоцитов и лейкоцитов к эндотелию).

Эффекты NO зависят от его концентрации, места продукции, степени диффузии через сосудистую стенку, способности взаимодействовать с кислородными радикалами и уровня инактивации.

Существуют два уровня секреции NO:

  1. Базальная секреция — в физиологических условиях поддерживает тонус сосудов в покое и обеспечивает неадгезивность эндотелия по отношению к форменным элементам крови.
  2. Стимулированная секреция — усиление синтеза NO при динамическом напряжении мышечных элементов сосуда, сниженном содержании кислорода в ткани в ответ на выброс в кровь ацетилхолина, гистамина, брадикинина, норадреналина, АТФ и др., что обеспечивает вазодилатацию в ответ на приток крови.

Нарушение биодоступности NO происходит вследствие следующих механизмов:

Снижения его синтеза (дефицит субстрата NO — L-аргинина);
- уменьшения на поверхности эндотелиальных клеток количества рецепторов, раздражение которых в норме приводит к образованию NO;
- усиления деградации (разрушение NO наступает прежде, чем вещество достигает места своего действия);
- повышения синтеза ЭТ-1 и других вазоконстрикторных субстанций.

Кроме NO, к вазодилатирующим агентам, образующимся в эндотелии, относятся простациклин, эндотелиальный фактор гиперполяризации, натрийуретический пептид С-типа и др., играющие важную роль в регуляции сосудистого тонуса при снижении уровня NO.

К основным эндотелиальным вазоконстрикторам относятся ЭТ-1, серотонин, простагландин Н 2 (ПГН 2) и тромбоксан А 2 . Самый известный и изученный из них— ЭТ-1 — оказывает непосредственное констрикторное влияние на стенку как артерий, так и вен. К другим вазоконстрикторам относятся ангиотензин II и простагландин F 2a , непосредственно действующие на гладкомышечные клетки.

Дисфункция эндотелия

В настоящее время под ЭД понимают дисбаланс между медиаторами, обеспечивающими в норме оптимальное течение всех эндотелийзависимых процессов.

Развитие ЭД одни исследователи связывают с недостатком продукции или биодоступности NO в стенке артерий, другие — с дисбалансом продукции вазодилатирующих, ангиопротекторных и ангиопролиферативных факторов, с одной стороны, и вазоконстрикторных, протромботических и пролиферативных факторов — с другой. Основную роль в развитии ЭД играют оксидантный стресс, продукция мощных вазоконстрикторов, а также цитокинов и фактора некроза опухоли, которые подавляют продукцию NO. При длительном воздействии повреждающих факторов (гемодинамическая перегрузка, гипоксия, интоксикация, воспаление) функция эндотелия истощается и извращается, в результате чего в ответ на обычные стимулы возникают вазоконстрикция, пролиферация и тромбообразование.

Кроме указанных факторов, ЭД вызывают:

Гиперхолестеролемия, гиперлипидемия;
- АГ;
- спазм сосудов;
- гипергликемия и сахарный диабет;
- курение;
- гипокинезия;
- частые стрессовые ситуации;
- ишемия;
- избыточная масса тела;
- мужской пол;
- пожилой возраст.

Следовательно, основными причинами повреждения эндотелия являются факторы риска атеросклероза, которые реализуют свое повреждающее действие через усиление процессов оксидантного стресса. ЭД является начальным этапом в патогенезе атеросклероза. In vitro установлено снижение продукции NO в клетках эндотелия при гиперхолестеролемии, что обусловливает свободнорадикальное повреждение клеточных мембран. Окисленные липопротеины низкой плотности усиливают экспрессию молекул адгезии на поверхности эндотелиальных клеток, приводя к моноцитарной инфильтрации субэндотелия.

При ЭД нарушается баланс между гуморальными факторами, оказывающими защитное действие (NO, ПГН), и факторами, повреждающими стенку сосуда (ЭТ-1, тромбоксан А 2 , супероксиданион). Одними из наиболее существенных звеньев, повреждающихся в эндотелии при атеросклерозе, являются нарушение в системе NO и угнетение NOS под влиянием повышенного уровня холестерола и липопротеинов низкой плотности. Развившаяся при этом ЭД обусловливает вазоконстрикцию, повышенный клеточный рост, пролиферацию гладкомышечных клеток, накопление в них липидов, адгезию тромбоцитов крови, тромбообразование в сосудах и агрегацию. ЭТ-1 играет важную роль в процессе дестабилизации атеросклеротической бляшки, что подтверждается результатами обследования больных с нестабильной стенокардией и острым инфарктом миокарда (ИМ). В исследовании отмечено наиболее тяжелое течение острого ИМ при снижении уровня NO (на основании определения конечных продуктов метаболизма NO — нитритов и нитратов) с частым развитием острой левожелудочковой недостаточности, нарушениями ритма и ормированием хронической аневризмы левого желудочка сердца.

В настоящее время ЭД рассматривают в качестве основного механизма формирования АГ. При АГ одним из главных факторов развития ЭД является гемодинамический, который ухудшает эндотелийзависимое расслабление вследствие уменьшения синтеза NO при сохраненной или увеличенной продукции вазоконстрикторов (ЭТ-1, ангиотензина II), ускоренной его деградации и изменении цитоархитектоники сосудов. Так, уровень ЭТ-1 в плазме крови у больных с АГ уже на начальных стадиях заболевания достоверно превышает таковой у здоровых лиц. Наибольшее значение в уменьшении выраженности эндотелийзависимой вазодилатации (ЭЗВД) придают внутриклеточному оксидантному стрессу, так как свободнорадикальное окисление резко снижает продукцию NO эндотелиоцитами. С ЭД, препятствующей нормальной регуляции мозгового кровообращения, у больных с АГ также связывают высокий риск цереброваскулярных осложнений, следствием чего являются энцефалопатия, транзиторные ишемические атаки и ишемический инсульт.

Среди известных механизмов участия ЭД в патогенезе ХСН выделяют следующие:

1) повышение активности эндотелиального АТФ, сопровождающегося увеличением синтеза ангиотензина II;
2) подавление экспрессии эндотелиальной NOS и снижение синтеза NO, обусловленные:

Хроническим снижением кровотока;
- повышением уровня провоспалительных цитокинов и фактора некроза опухоли, подавляющих синтез NO;
- повышением концентрации свободных R(-), инактивирующих ЭФР-NO;
- повышением уровня циклооксигеназозависимых эндотелиальных факторов констрикции, препятствующих дилатирующему влиянию ЭФР-NO;
- снижением чувствительности и регулирующего влияния мускариновых рецепторов;

3) повышение уровня ЭТ-1, оказывающего вазоконстрикторное и пролиферативное действие.

NO контролирует такие легочные функции, как активность макрофагов, бронхоконстрикция и дилатация легочных артерий. У пациентов с ЛГ снижается уровень NO в легких, одной из причин которого является нарушение метаболизма L-аргинина. Так, у больных с идиопатической ЛГ отмечают снижение уровня L-аргинина наряду с повышением активности аргиназы. Нарушенный метаболизм асимметричного диметиларгинина (АДМА) в легких может инициировать, стимулировать или поддерживать течение хронических заболеваний легких, в том числе артериальной ЛГ. Повышенный уровень АДМА отмечают у пациентов с идиопатической ЛГ, хронической тромбоэмболической ЛГ и ЛГ при системном склерозе. В настоящее время активно изучают роль NO также в патогенезе легочных гипертензивных кризов. Усиленный синтез NO является адаптивной реакцией, противодействующей чрезмерному повышению давления в легочной артерии в момент острой вазоконстрикции.

В 1998 г. были сформированы теоретические основы для нового направления фундаментальных и клинических исследований по изучению ЭД в патогенезе АГ и других ССЗ и способах эффективной ее коррекции.

Принципы лечения дисфункции эндотелия

Поскольку патологические изменения функции эндотелия являются независимым предиктором неблагоприятного прогноза большинства ССЗ, эндотелий представляется идеальной мишенью для терапии. Цель терапии при ЭД — устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении факторов, приводящих к ССЗ. Основной задачей является улучшение доступности эндогенного NO благодаря стимуляции NOS или ингибированию распада.

Немедикаментозные методы лечения

В экспериментальных исследованиях установлено, что потребление продуктов с высоким содержанием липидов приводит к развитию АГ за счет повышенного образования свободных радикалов кислорода, инактивирующих NO, что диктует необходимость ограничения жиров. Большое потребление соли подавляет действие NO в периферических резистивных сосудах. Физические упражнения повышают уровень NO у здоровых лиц и у пациентов с ССЗ, поэтому известные рекомендации в отношении уменьшения потребления соли и данные о пользе физических нагрузок при АГ и ИБС находят свое еще одно теоретическое обоснование. Считается, что положительный эффект на ЭД может оказывать применение антиоксидантов (витамины С и Е). Назначение витамина С в дозе 2 г пациентам с ИБС способствовало значительному кратковременному уменьшению выраженности ЭЗВД, что объяснялось захватом радикалов кислорода витамином С и, таким образом, повышением доступности NO.

Медикаментозная терапия

  1. Нитраты . Для терапевтического воздействия на коронарный тонус давно применяют нитраты, способные независимо от функционального состояния эндотелия отдавать NO стенке сосудов. Однако несмотря на эффективность в отношении расширения сосудов и уменьшение выраженности миокардиальной ишемии, применение препаратов этой группы не приводит к длительному улучшению эндотелиальной регуляции коронарных сосудов (ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенному NO).
  2. Ингибиторы ангиотензинпревращающего фермента (АПФ) и ингибиторы рецепторов ангиотензина II. Роль ренин-ангиотензин-альдостероновой системы (РАС) в отношении ЭД главным образом связана с вазоконстрикторной эффективностью ангиотензина II. Основной локализацией АПФ являются мембраны эндотелиальных клеток сосудистой стенки, в которых находится 90% всего объема АПФ. Именно кровеносные сосуды — основное место превращения неактивного ангиотензина I в ангиотензин II. Основными блокаторами РАС являются ингибиторы АПФ. Кроме того, препараты этой группы проявляют дополнительные вазодилатирующие свойства вследствие их способности блокировать деградацию брадикинина и повышать его уровень в крови, что способствует экспрессии генов эндотелиальной NOS, повышению синтеза NO и уменьшению его разрушения.
  3. Диуретики . Существуют данные, доказывающие, что индапамид обладает эффектами, позволяющими, помимо диуретического действия, оказывать прямое вазодилатирующее влияние за счет антиоксидантных свойств, повышения биодоступности NO и уменьшения его разрушения.
  4. Антагонисты кальция. Блокирование кальциевых каналов уменьшает прессорный эффект важнейшего вазоконстриктора ЭТ-1, не влияя прямо на NO. Кроме того, препараты этой группы снижают концентрацию внутриклеточного кальция, что стимулирует секрецию NO и обусловливает вазодилатацию. Одновременно уменьшаются агрегация тромбоцитов и экспрессия молекул адгезии, а также подавляется активация макрофагов.
  5. Статины . Поскольку ЭД является фактором, приводящим к развитию атеросклероза, при заболеваниях, ассоциированных с ним, существует необходимость коррекции нарушенных функций эндотелия. Эффекты статинов связаны со снижением уровня холестерола, угнетением его локального синтеза, торможением пролиферации гладкомышечных клеток, активацией синтеза NO, что способствует стабилизации и предотвращению дестабилизации атеросклеротической бляшки, а также снижению вероятности возникновения спастических реакций. Это подтверждено в многочисленных клинических исследованиях.
  6. L -аргинин. Аргинин — условно незаменимая аминокислота. Среднесуточная потребность в L-аргинине составляет 5,4 г. Он является необходимым предшественником для синтеза белков и таких биологически важных молекул, как орнитин, пролин, полиамины, креатин и агматин. Однако главная роль аргинина в организме человека состоит в том, что он является субстратом для синтеза NO. Поступивший с пищей L-аргинин всасывается в тонком кишечнике и поступает в печень, где основное его количество утилизируется в орнитиновом цикле. Остающаяся часть L-аргинина используется ка к субстрат для продукции NO.

Эндотелийзависимые механизмы L -аргинина:

Участие в синтезе NO;
- уменьшение адгезии лейкоцитов к эндотелию;
- уменьшение агрегации тромбоцитов;
- снижение уровня ЭТ в крови;
- повышение эластичности артерий;
- восстановление ЭЗВД.

Следует отметить, что система синтеза и высвобождения NO эндотелием обладает значительными резервными возможностями, однако потребность в постоянном стимулировании его синтеза приводит к истощению субстрата NO — L-аргинина, восполнить который призван новый класс эндотелиопротекторов — донаторов NO. До недавнего времени отдельного класса эндотелиопротекторных препаратов не существовало, в качестве средств, способных корригировать ЭД, рассматривали лекарственные препараты других классов, обладающих подобными плейотропными эффектами.

Клинические эффекты L-аргинина как донатора N O . Имеющиеся данные указывают на то, что эффект L-apгининa зависит от его концентрации в плазме крови. При приеме L-apгининa внутрь его эффект связан с улучшением ЭЗВД. L-apгинин снижает агрегацию тромбоцитов и уменьшает адгезию моноцитов. При повышении концентрации L-apгининa в крови, которое достигают путем в/в его введения, проявляются эффекты, не связанные с продукцией NO, а высокий уровень L-apгининa в плазме крови приводит к неспецифической дилатации.

Влияние на гиперхолестеролемию. В настоящее время существуют данные доказательной медицины об улучшении эндотелиальной функции у больных с гиперхолестеролемией после приема L-apгининa, подтвержденные в двойном слепом плацебо-контролируемом исследовании.

Под влиянием перорального приема L-aprининa у больных со стенокардией повышается толерантность к физической нагрузке по данным пробы с 6-минутной ходьбой и при велоэргометрической нагрузке. Аналогичные данные получены при кратковременном применении L-apгининa у пациентов с хронической ИБС. После инфузии 150 мкмоль/л L-aprининa у пациентов с ИБС отмечено увеличение диаметра просвета сосуда в стенозированном сегменте на 3-24%. Применение раствора аргинина для перорального приема у больных со стабильной стенокардией II-III функционального класса (по 15 мл 2 раза в сутки в течение 2 мес) дополнительно к традиционной терапии способствовало достоверному увеличению выраженности ЭЗВД, повышению толерантности к физической нагрузке и улучшению качества жизни. У больных с АГ доказан положительный эффект при добавлении к стандартной терапии L-apгининa в дозе 6 г/сут. Прием препарата в дозе 12 г/ сут способствует снижению уровня диастолического артериального давления. В рандомизированном двойном слепом плацебо-контролируемом исследовании доказано позитивное влияние L-apгининa на гемодинамику и способность к выполнению физической нагрузки у пациентов с артериальной ЛГ, принимавших препарат перорально (по 5 г на 10 кг массы тела 3 раза в сутки). Установлено значительное повышение концентрации L-цитpyллинa в плазме крови таких больных, указывающее на усиление продукции NO, а также снижение на 9% среднего легочного артериального давления. При ХСН прием L-apгининa в дозе 8 г/сут на протяжении 4 нед способствовал повышению толерантности к физической нагрузке и улучшению ацетилхолинзависимой вазодилатации лучевой артерии.

В 2009 г. V. Bai еt аl. представили результаты метаанализа 13 рандомизированных исследований, выполненных в целях изучения эффекта перорального приема L-apгининa на функциональное состояние эндотелия. В этих исследованиях изучали эффект L-apгининa в дозе 3-24 г/сут при гиперхолестеролемии, стабильной стенокардии, заболеваниях периферических артерий и ХСН (длительность лечения — от 3 дней до 6 мес). Метанализ показал, что пероральный прием L-apгининa даже короткими курсами существенно увеличивает выраженность ЭЗВД плечевой артерии по сравнению с показателем при приеме плацебо, что свидетельствует об улучшении функции эндотелия.

Таким образом, результаты многочисленных исследований, проведенных на протяжении последних лет, свидетельствуют о возможности эффективного и безопасного применения L-аргинина как активного донатора NO с целью устранения ЭД в при ССЗ.

Коноплева Л.Ф.

В начале 80-х годов Furchgott и Zawadzki установили, что ацетилхолин сообщает вазодилатацию только при интактном эндотелии. С того времени уровень знаний о функциях и патофизиологии эндотелия поднимался по экспоненте.

Сегодня мы знаем, что эндотелий выполняет ключевую функцию в регуляции тонуса сосудов, роста сосудов, при процессах адгезии лейкоцитов и в балансе профибринолитической и протромбогенной активности. Решающую роль при этом играет образующаяся в эндотелии окись азота (NO). Окись азота выполняет важную функцию в регуляции коронарного кровотока, а именно, расширяет или сужает просвет сосудов в соответствии с потребностью. Увеличение тока крови, например, при физической нагрузке, благодаря срезывающим усилиям протекающей крови приводит к механическому раздражению эндотелия. Это механическое раздражение стимулирует синтез NO, который, выходя за просвет, обуславливает релаксацию мышц сосудов и таким образом действует сосудорасширяюще. Другие факторы, например, ацетилхолин, который также через специфические рецепторы воздействует на синтез NO, одновременно обладают способностью непосредственно через сокращения гладких мышечных клеток вызывать вазоконстрикцию (рис.1). Если функции эндотелия в норме, то перевешивает вазодилатирующие действие ацетилхолина. При повреждении эндотелия равновесие нарушается в сторону вазоконстрикции. Это неравновесие между вазодилатацией и вазоконстрикцией характеризует состояние, которое называют эндотелиальной дисфункцией. На практике это означает: внутрикоронарное введение ацетилхолина при здоровом эндотелии и его нормальной функции вызывает расширение коронарных артерий. А с развитием артериосклероза или при наличии коронарных факторов риска наблюдается парадоксальная вазоконстрикция.

Причины эндотелиальной дисфункции

Незащищенное положение эндотелия, который, как одноклеточный внутренний слой, покрывает изнутри стенки сосудов, делает его уязвимым по отношению к различным воздействиям и известным сердечно-сосудистым факторам риска. Так, например, при гиперхолестеринемии происходит аккумуляция холестерина липопротеидов низкой плотности на стенках сосудов. Холестерин липопротеидов низкой плотности окисляется, при этом высвобождаются кислородные радикалы, что опять-таки привлекает моноциты. Они могут проникать в сосудистую стенку и взаимодействуя с окисленными липопротеидами низкой плотности и усиливать высвобождение кислородных радикалов. Таким образом, эндотелий оказывается под воздействием окислительного стресса. Под окислительным стрессом понимают усиленное разложение NO кислородными радикалами, что приводит к ослаблению вазодилатации. Соответственно у пациентов с гиперхолестеринемией наблюдается парадоксальная вазоконстрикция после стимуляции ацетилхолином.

Артериальная гипертензия также изменяет морфологию и функции эндотелия. По сравнению с пациентами с нормальным давлением в этих случаях развивается усиленное взаимодействие тромбоцитов и моноцитов с клетками эндотелия, а повышенное давление крови благоприятствует кроме того окислительному стрессу на стенке сосуда, в результате уменьшается, зависящая от эндотелия, вазодилатация. С возрастом эндотелиальный синтез NO уменьшается и в равной степени развивается усиленная реактивность эндотелия в отношении сосудосужающих факторов. Существенно вредным фактором для функции эндотелия является курение. После потребления никотина происходит удвоение циркулирующих клеток эндотелия в периферической крови, а это является признаком усиленного клеточного цикла и десквамации ("слущивания") эндотелия. Уже в молодом возрасте у курящих людей обнаруживается усиленная уязвимость эндотелия и тенденция к усилению эндотелиальной дисфункции в соответствии с возрастом и количеством потребляемого никотина.

У страдающих сахарным диабетом часто обнаруживается крайне акселирированная форма артериосклеротических изменений. В качестве ее причины обсуждается дисфункция эндотелия, вызванная хронически повышенным уровнем сахара в крови. В экспериментальных исследованиях было показано, что повышенная концентрация глюкозы приводит к парадоксальной вазоконстрикции как реакции на введение ацетилхолина. Очевидно, причинную роль здесь играет не столько нарушение обмена NO, сколько усиленное образование действующих вазоконстрикторно простогландинов, которые противодействуют передаваемой NO вазодилатации. Наряду с классическими факторами риска атеросклеротических изменений сосудов, на развитие эндотелиальной дисфункции при сниженной активности синтеза NO, возможно, оказывает влияние и недостаток физической подвижности.

Терапевтические стратегии при эндотелиальной дисфункции

Целью терапии при эндотелиальной дисфункции является устранение парадоксальной вазоконстрикции и с помощью повышенной доступности NO в стенке сосудов создание защитной среды в отношении атеросклеротических изменений. Основными задачами для эффективной терапии является исключение факторов сердечно-сосудистого риска и улучшение доступности эндогенного NO благодаря стимуляции синтетазы NO или ингибирования распада NO (табл.1).

К немедикаментозным методам лечения эндотелиальной дисфункции относятся: диетотерапия, направленная на снижение уровня холестерина в сыворотке крови, систематическая физическая нагрузка и отказ от потребления сигарет и алкоголя. Считается, что улучшить положение при эндотелиальной дисфункции способно применение антиоксидантов, например, витаминов Е и С. Так, Levine GE et al. (1996) показали, что после перорального введения 2 г витамина С у пациентов с ИБС наблюдалось значительное кратковременное улучшение зависимой от эндотелия вазодилатации Arteria brachialis при реактивной гиперемии. Причем авторы обсуждали в качестве механизма действия захват радикалов кислорода витамином С и таким образом лучшую доступность NO. По мнению некоторых авторов, имеются также основания для применения блокаторов кальциевых каналов и заместительной терапии эстрагенами в отношении положительного влияния на эндотелиальную дисфункцию. Однако объяснить механизм действия в деталях пока не удалось. Для терапевтического воздействия на коронарный тонус уже давно применяются нитраты, способные независимо от функционального состояния эндотелия отдавать NO на стенки сосудов (рис.1). Но хотя нитраты благодаря расширению стенозированных сегментов сосудов и своему гемодинамическому воздействию, безусловно, эффективны в отношении снижения миокардиальной ишемии, они не приводят к длительному улучшению передаваемой эндотелием регуляции сосудов коронарного сосудистого ложа. Как установили Harrison DG и Bates JN (1999), ориентированная на потребность, ритмичность изменений тонуса сосудов, которая управляется с помощью эндогенного NO, не поддается стимуляции экзогенно введенным NO. Если посмотреть с точки зрения воздействия на причину эндотелиальной дисфункции, то улучшения состояния можно было бы добиться с помощью снижения повышенных показателей холестерина и соответствующего окислительного стресса в сосудистой стенке. И на самом деле уже показано, что после 6-месячной терапии ингибиторами редуктазы коэнзима А гонадотропного гормона человека удалось добиться улучшения сосудодвигательной реакции коронарных артерий (Anderson TJ et al. (1995), Egashira K. et al. (1994)). Gould KL et al. (1994) показали, что очень резкое снижение холестерина уже через 6 недель привело к функциональному улучшению миокардиальной перфузии под нагрузкой.

Роль ренинангиотензинной системы (РАС) в отношении эндотелиальной дисфункции главным образом базируется на вазоконстрикторной эффективности ангиотензина II. Одним из первых исследований, которое показало улучшение эндотелиальной дисфункции при применении ингибитора АПФ хинаприла, было исследование TREND (закончено в 1996 году). После 6 месяцев терапии хинаприлом в этом исследовании наблюдали значительное улучшение парадоксальной сообщаемой ацетилхолином вазоконстрикции эпикардиальных коронарных сосудов по сравнению с пациентами из группы плацебо. Напрашивается засчитать этот результат в счет сниженного образования ангиотензина II. В качестве дополнительного эффекта существенную роль в улучшении сообщаемых эндотелией вазодилатаций при терапии ингибиторами АПФ может играть уменьшенное разложение сосудорасширяюще действующего брадикинина с помощью ингибирования ангиотензинпревращающего фермента. В настоящее время закончено еще одно исследование (Quo Vadis (1998)), которое показало, что у пациентов с ИБС после коронарного шунтирования, которых лечили ингибитором АПФ хинаприлом, гораздо реже развивались ишемические осложнения, чем у пациентов, не получавших такого лечения. Насколько улучшение положения с эндотелиальной дисфункцией с помощью ингибиторов редуктазы кофермента А гонадотропного гормона человека и ингибиторов АПФ является эпифеноменом или при применении этих двух классов субстанций положительные эффекты играют причинную роль в отношении увеличения продолжительности жизни у пациентов с ишемической болезнью сердца (исследования 4S, SOLVD, SAVE, CONSENSUS II). В настоящее время эти вопросы остаются открытыми.

Практическое значение эндотелиальной дисфункции заключается в понимании нарушения равновесия между сосудопротективными факторами и факторами повреждения сосудов. Диагностику повреждений эндотелия на основе парадоксальной вазоконстрикции, например, при введении ацетилхолина, можно проводить еще до проявления макроскопически видных повреждений сосуда. Благодаря этому имеется возможность, особенно у пациентов группы риска, например, с семейной гиперхолестеринемией или артериальной гипертонией, с помощью минимизации факторов риска и специфического фармакологического воздействия (ингибиторы редуктазы кофермента А ганадотропного гормона человека, ингибитора АПФ, антиоксиданты, ингибиторы синтеза холестерина и т.п.) победить эндотелиальную дисфункцию или, по крайней мере, уменьшить ее и может быть даже улучшить прогноз у таких пациентов.

В настоящее время подавляющее большинство патологов считает, что пусковым моментом для развития атеросклероза сосудов является повреждение (десквамация) сосудистого эндотелия. Основные повреждающие факторы представлены на рисунке.

Основные этиологические факторы, вызывающие повреждение эндотелия сосудов

Гипертензия является мощным фактором повреждения эндотелия сосудов, особенно в местах их бифуркации. Это явление хорошо иллюстрирует приводимый ниже рисунок.

Роль гипертензии в повреждении сосудистого эндотелия

В участке «а» давление крови наибольшее, напряжение сдвига максимальное. Именно здесь и происходит разрушение эндотелиоцитов и их десквамация (слущивание) с поверхности сосуда. В участке «б» давление крови наименьшее. Повреждение эндотелия на этих участках не происходит. Как известно, гипертоническая болезнь и атеросклероз - это два патологических процесса, тесно связанные между собою, или, точнее, способствующие развитию друг друга.

Связь между курением и атеросклерозом известна давно. Помимо приведенных на рисунке проатеросклеротических факторов, связанных с курением, следует иметь в виду, что у курильщиков усиленно продуцируются многие цитокины - активаторы воспаления. Таким образом, косвенно курение способствует поддержанию воспалительного процесса в местах повреждения сосудистого эндотелия.

О возможном влиянии на повреждение эндотелия и развитие атеросклероза некоторых инфекционных агентов было уже сказано. Стоит добавить, что антигены микробов и вирусов, внедрившиеся в эндотелиоциты и гладкомышечные клетки, способствуют активации соответствующих клеточных и гуморальных факторов иммунитета, что, в свою очередь, провоцирует и поддерживает воспалительный процесс.

В разделе лекции, посвященном истории изучения атеросклероза была уже описана роль гомоцистеина (точнее, гипергомоцистеинемии) в развитии атеросклероза. Основным повреждающим фактором гипергомоцистеинемии является значительное увеличение образования свободных радикалов. По отношению к сосудистому эндотелию этот фактор, безусловно, является повреждающим.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Повреждение сосудистого эндотелия - пусковой механизм развития атеросклероза:

  1. 1. Неспецифические формы повреждения клетки, их виды и механизмы развития.
  2. Тромбофилии, связанные с повышением активности тромбоцитов и повреждением сосудистой стенки.
  3. Из истории изучения атеросклероза. Теории атеросклероза
  4. Механизмы кровоточивости, связанные с тромбоцитами (тромбоцитопении и тромбоцитопатии) и сосудистой стенкой.